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Project Summary

The principal objective of the research reported here is the re-design, analysis and optimization of our

newly developed neural network fuzzy adaptive controller model for complex processes capable of learning

fuzzy control rules using process data and improving its control through on-line adaption. The learned

improvement is according to a performance objective function that provides evaluative feedback; this

performance objective is broadly defined to meet long-range goals over time.

Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for

which standard models and controls are either inefficient, impractical or cannot be derived, the state of

the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc

heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control

and permit on-line adaption and in the process optimize control. The operation of neural networks

integrates very naturally with fuzzy logic.

The neural networks which were designed and tested using simulation software and simulated data,

followed by realistic industrial data were reconfigured for application on several platforms as well as for the

employment of improved algorithms. The statistical procedures of the learning process were investigated

and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals,

etc.). The computational advantage of dynamic programming-like methods of optimal control was used

to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the

control rules were applied. Comparisons to other methods and controllers were made so as to identify

the major advantages of the resulting controller model.

Several specific modifications and extensions were made to the original controller. Additional mod-

ifications and explorations have been proposed for further study. Some of these are in progress in our

laboratory while others await additional support. All of these enhancements will improve the attrac-

tiveness of the controller as an effective tool for the on line control of an array of complex process

environments.

Based on identified research activities and projects at NASA, we established the following research ob-

jectives of interest to the ongoing activities relative to efficient application of fuzzy logic, neural networks,

and optimization to autonomous orbital operations at JSC but specifically control of tethered satellites.



Wesoughttocontributeto theimprovementofaccurateinterpretationofsensorandothermeasurements

forderivingaccuratestateinformationpriorto optimalcontrolthroughthedesignofoptimalclusterin_ : ,_

andclassifieralgorithms.This isof fundamentalimportancein thedesignof computationaliyefficient

fuzzylogicandneuralnetworks.Weachievedthisbydevelopinga fuzzyclusteringalgorithmbasedon
fuzzycriteriawhichwerethencomparedwith theperformanceofotherexistingclusteringmethods.

Anotherareaofcontributionwasin thedesignof computationallyefficientneuralnetworksforspace

systemsapplicationsthroughthedevelopmentofefficientdynamicprogramming-likemethodsandalgo-

rithmsfortheefficientimplementationof reinforcementlearningin adaptiveneuralnetworks.Thiswas

achievedbyindifferentfronts.Thefirstwasthedevelopmentofa newtypeoffuzzydynamicprogram-
mingwhichwecalledfuzzycriteriadynamicprogrammingasopposedto theclassicalcostdependent

criteriaalgorithms.Thesecondis theeffortto imbueourneurofuzzy,adaptive controller with learning

capabilities based on the temporal difference (TD) and Q-Learning algorithms. Each of these results

tantamounts to improved optimization approaches for our first generation learning controller.

The new improved controller was then employed to simulate the performance of two important real

world problems of interest or similar to those encountered in space systems. The first is the tethered

satellite problem drawn from the various high fidelity simulations at JSC by the Software Technology

Group (STG). We note that the tethered satellite system retrieval problem was visited as a problem of

central interest to NASA for which inadequate and inefficient control methodologies had been used due

to the complexities of the system. The literature showed that fuzzy logic controllers could be effective

for these types of problems. Our neuro-fuzzy adaptive controller offers significant advantages over both

classical and fuzzy controllers for this problem. The second problem area visited was the power systems

stabilization problem faced by various real world environments including NASA. In each of the foregoing

application problem areas, the performance of our controller was demonstrated. Areas of superiority, as

well as those in need of improvements and extensions, were identified.

In summary, each of the proposed goals was achieved and exceeded in instances during the duration

of the project. A major outcome is the reconfiguration, development, testing, and application of the sta-

tistical fuzzy associative learning controller, SFAL-C, to an array of sample problems, both prototypical

and novel. An overview of the controller design, components and performance is given in Chapter 2.

In Chapter 3, we provide a more detailed account of the controller and its properties as extracted from

Chapter 3 of precursor project funded by the National Science Foundation. Modifications and requisite

extensions to the controller are presented in Chapter 4. In Chapter 5, we discuss the development of

efficient clustering methods. In Chapter 6, we outline the development of a new fuzzy dynamic program-

ming methodology which has many ramifications for control in general and the project in particular. In

Chapter 7, we consider two problems of import to NASA and applied the controller to these problems.

In particular, the problems of tethered satellite system retrieval and power system stabilization are con-
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sideredingreaterdetail.
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Chapter 1

Introduction, Research Objectives

and Major Results

1.1 Overview of the Literature Leading to the Project

Control and optimal decision-making in various systems: industrial, economic, biological, ecological,

social and space exploration systems require modeling and analysis techniques that are effective for large,

complex, often nonlinear and imprecisely defined systems. The analytical and statistical methods that

have worked well in the "hard" sciences are often difficult to apply to these complex systems. In the

"soft" sciences of these systems, where life forms or human intelligence are involved, interactions and

relationships are key. Living systems, particularly the human brain, have provided the inspiration for

many human-made tools useful in engineering with these complex systems.

The field of artificial intelligence (AI) is a class of such tools inspired by human processing. The

most effective processing that humans do is not with numeric quantities but with concepts and symbols.

AI systems manipulate "symbols" or abstract objects according to rules and relationships. Many useful

systems have been engineered with this type of processing, including expert systems for decision-making

and control for complex operations and processes. Unlike most human processing, however, AI systems

tend to be rigidly rule-based and inflexible. Also, while precise quantities are less important with AI,

the objects are very "hard and crisp". For example, an object is either red or it is not, or a proposition

is either true or it is not. Despite the utiliW of A[ in certain instances, there are situations where

adaptabiliW and reasoning with less precise concepts are required.

Humans are very poor at working with precise numerical values, precise concepts, or tedious sequential

procedures. Compared to very mechanistic machines like yon Neumann computers, humans are slow and

imprecise.
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At NASA,andin connection with the quest for cost effective and human friendly engineered systems,

the need to depart from classical, hard and rigid design and control approaches has become considerably

transparent. The need to design and operationalize cost effective integrated human/machine interfaces

and environments has led to increased interest in telerobotics, artificial intelligence, and systems analysis

techniques in various aspects of space exploration and navigation. Several groups concerned with these

problems have emerged in various NASA locations. One such group at NASA's Johnson Space Center

(SPC) is the Software Technology Branch (STB).

One of the main concerns of the STB is the development of intelligent control systems for space sys-

tems and robotics. Among the problem areas of interest are various issues in connection with autonomous

orbital operation. The principal modeling and analysis technique used is fuzzy logic and neural networks.

The problems are plagued with considerable complexities, nonlinearit!es, uncertain dynamics particu-

larly of the imprecise variety, and time varying phenomena. The appeal of fuzzy logic is perhaps best

summarized thus: .

... it is this fuzzy ... logic that plays a basic role in ... one of the most important

facets of human thinking, namely, the ability to summarize information-to extract from the

collections of masses of data impinging on the human brain only those sub collections which

are relevant to the performance of the task at hand .... a summary is an approximation to

what it summarizes. For many purposes, a very approximate characterization of a collection

of data is sufficient because most of the basic tasks performed by humans do not require a high

degree of precision in their execution. The human brain takes advantage of this tolerance for

imprecision by encoding the 'task-relevant' (or 'decision-relevant') information into labels of

fuzzy sets which bear an approximate relation to the primary data. In this way, the stream of

information reaching the brain via the visual, auditory, tactile and other senses is eventually

reduced to the trickle that is needed to perform a specified task with a minimal degree of

precision. (Zadeh 1973, p. 28-29.)

What is needed is the development of systems which combine the speed and learning capability of

neural networks with the ability to aggregate and reason with imprecision that fuzzy logic offers.

Developing a methodology for integrating the computational paradigms of fuzzy expert

systems and neural networks is of paramount importance. Harnessing their combined power in

a hybrid system, which allows for imprecise information and/or uncertain environments, yields

a system more powerful than either system standing alone. (Kandel, Schneider, Langholz

1991, p. 98)

While considerable success has been reported by the STB of JSC in dealing with these problems,

much remains to be done. The answers to the following poignant questions posed by Lea and Jani (1992,
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pp.152-153)mustbeaffirmativelyprovidedbeforecompletesuccesscanbeachieved:

1. Is it possibleto createcontrolsystemsthat donotrequirea highdegreeof redesignwhensystems

configurationschangeoroperatingenvironmentsdiffer?

2. Cana fuzzycontrollerbeusedasa high-levelcontrollerto functionwithclassicalcontrollersina

waythehumanwould?

3. Howeasyor difficultis it to designandimplementa fuzzyrulebasethatwill controla complex

systemasopposedto developingaclassicalcontrolsystemto solvethesameproblem?

4. Particularquestionsof interestto NASAare,Wherecanhardwareimplementationsbeutilized
advantageously,andhoweasyordifficultis it to transferrulebasestohardware?

Ourthesisis thattheabovecanbeaidedbyanadroitweddingoftechniquesofoptimization,control

theory,fuzzylogicandneuralnetworks,andof course, computer science in the development of such

systems. Thus, we proposed a work mission which followed this line of pursuit.

1.2 Background and Significance of the Problem

In this section, the suitability of fuzzy logic methods for the control of complex processes such as those

in space exploration is discussed. We suggested that the developments most needed to increase the

applicability and effectiveness of these methods could be achieved by an adroit integration of fuzzy logic

and neural networks and optimization. In the sequel, we briefly review the state of the art at the beginning

of our project.

1.2.1 Overview of Research in Fuzzy Control

A number of industrial processes and operations involve systems that are highly nonlinear, have a large

number of interacting variables, or much of what is known about their modeling and control is imprecise

or expressible mostly in linguistic terms. It is now generally agreed that the well-developed methods of

controltheory are not applicablebecause these systems are usuallytoo impreciselyknown to develop an

adequate mathematical model, and even ifa model could be obtained,there are no generalresultsfor

controllingnonlinearsystems (see,for example, discussionsin Gupta 1989, p. 3019; Lee 1990a, p. 411,

432).

Yet, experienced human operators are often able to control such processes (even when they know little

about the plant dynamics) by using imprecise heuristic rules. These heuristics have often been modeled

successfully by "knowledge-based" or "expert" systems which consist of a set of linguistic statements or

rules which specify what control actions are to be taken in response to process behavior (Patrikar and
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Provence1990,p. 359).A humandecision-makeraggregatesvolumesof numericaldataintolinguistic

labelsthat makethepartitionofthedataspacemoremanageableforprocessing(Gupta1990,p. 3019)":-:-e.

Theimprecisionoftheknowledgethathumansemployiseffectivelyimplementedby"if-then"rulesusing

theselinguisticlabelsandfuzzylogic.Thismethodologyhasbeeneffectivelyusedin manyindustrial

controlproblems,suchasblastfurnace,cementkiln andsteelplantprocessingcontrol;robotvisionand

movementcontrol;flightcontrol(seeLee1990a,Sugeno1985for manyreferencestherein).

Fuzzycontrolrulesmaysometimesbeobtainedbyobservingtheactionsof thehumancontrollerand
askingquestionsabouthisorherprocedures(Lee1990a,pp.411-412).In suchcases,theresultingrules

needto becheckedforconsistencyandaccuracy;theresultingcontrolmaystill befarfromoptimal.In

general,determiningfuzzycontrolrulesisevenmoreinvolved.Manyp_acticalsituationsinvolve several

human operators, a mixture of human and machine control, or no human operators at all. In designing

controllers for these more complex systems, the knowledge engineer would like to capture the experience,

knowledge and cognitive skill of human experts, requiring lengthy study and perhaps interviews and

questionnaires (Gupta 1989, p. 3019; Lee 1990a, p. 411). These procedures are subjective, ad hoc, and

require several cycles of trial, evaluation, revision and retrial (Lee 1990a, pp. 411-412). Sometimes it is

simply not feasible or possible to derive the rules this way.

Determining the membership functions for the fuzzy categories also often involves the skill of experts

in a "cut and trial" process, and "... this inevitably becomes a bottleneck of system design (Takagi

1990)".

More efficient and systematic methods for knowledge acquisition and fuzzy controller synthesis are

needed (Lee 1990a). Adaptive fuzzy controllers capable of learning from process data as well as in-

corporating linguistic data could address this need and offer significant advantages. An adaptive fuzzy

controller could automatically generate a set of linguistic rules and improve on them as the control process

evolves (Patrikar and Provence 1990, p. III-359; Procyk and Mamdani 1979, p. 15), without interruption

of current service (Bezdek 1992, p. 102).

There have been some results on adaptive fuzzy controllers, known as linguistic self-organizing con-

trollers. Procyk and Mamdani (1979) pioneered this line of work and others have published results based

on their model. Other work on "self-tuning" improvement for fuzzy controllers has been presented (e.g.,

Maeda 1990). Xu and Lu (1987) and Araki, et al (1991) developed adaptive rule-modification procedures

for system identification. However, these methods "... suffer from some drawbacks such as high compu-

tation time, high memory storage requirements and complex rule modification procedures (Patrikar and

Provence 1990, p. III-359)." TaLagi and Sugeno (1985) use linear models and fuzzy parameters to perform

system identification of existing human control, but their system is not adaptive. These methods do not

employ neural networks, rather they are attempts to make sequential, rule-based algorithms incorporate

adaptive or learning capability, which has proven to be difficult.



Neuralnetworkshavebeenproposedasa meansto implementfuzzycontrollers(Rocha1991;Gupta
andGorzalczany1991;Yager 1991; Czogala 1991; Gupta and Pedrycz 1989; Gupta 1989). In these

studies, the linguistic labels for process state and control variables are presumed already given, and it

is the "if-then" associations between these which are learned. The learning requires that all or some of

the rules are already obtained by other methods, since the aim in these studies was to express knowtedge

derived otherwise. In Patrikar and Provence (1990), control rules are learned when none are known

a priori, but a set of performance evaluation rules must be pre-established. A self-organizing neural

network controller of limited applicability is reported by Nakanishi (1990). Such work (e.g., Yamaoka

and Mukaidono 1991) uses feed-forward networks with pre-determined fuzzy sets to identify the fuzzy

rules relation from process input-output pairs, but from such a model the control must yet be derived•

All of these methods use the back-propagation learning algorithm, which is a supervised scheme and is

notoriously slow. Other research has focused on feed forward networks to learn membership functions.

These are supervised learning methods requiring a priori knowledge about the fuzzy sets in order to

construct the training sets. Yamaguchi (1991) used an unsupervised neural network to learn membership

functions directly from process data, but the number of rules and their form are pre-established and

limited.

There have been some results with reinforcement learning. Berenji (1992) has reported a modified

back propagation network that uses reinforcement learning in a controller which refines pre-established

rules. Lee (1990) extended the work of Barto and Sutton (1983) to a fuzzy reinforcement learning scheme

with adaptive critic; this work used predefined membership functions for the states and the training

essentially adjusted the location but not the shape or spread of the control membership functions.

One generally-applicable adaptive fuzzy controller which learns both membership functions and an

arbitrary set of control rules "from scratch" is due to Jang (1992) who reported a fuzzy controller which

uses back propagation feed forward networks to learn both the fuzzy membership functions and the fuzzy

rules with no a priori knowledge. However, the fact that it is based on error back-propagation means

that very rich information in the form of errors as feedback rather than simply a performance measure

as feedback is required for learning.

1.2.2 Neural Networks to Implement Learning

Neural networks have been used successfully in many applications to provide learning capability. A neural

network is a system of simple interconnected components called neurons, each of which computes for its

single output y, a generally nonlinear function g of the weighted sum of its inputs x+, i = 1..... p. Each

weight w_ is the strength of connection from the input source to the neuron. These weights encode the

information contained in a neural network using various activation functions (see Rumelhart 1986).

Neural networks are not programmed with a list of instructions to be executed sequentially like
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ordinary computers. Nor does the learning take place as in some AI methods where a collection of

explicit rules are formulated using rules that adapt other rules. Learning neural networks are designed,

like the human brain, to learn to perform a task by being taught with a series of examples and then to

generalize to new instances. It is in this sense that the network can be said to have learned the rules and it

"appears in hindsight as though the model did indeed know those rules (Khanna 1990, p. 7)." The series

of examples of desired input-output relations examples make up the training set, which together with a

proper learning algorithm allow the desired information to be encoded in the network (Alspector 1989,

p. 30). Thus, neural systems are especially useful for problems where a compact algorithmic description

does not exist but this set of data does, as is the case with most of the difficult problems of artificial

intelligence (Lippman 1987, p. 4).

This learning "extracts correlation" between the inputs and outputs presented in the training set,

finding the significant statistical regularities and ignoring random deviations, making it robust and in-

sensitive to noise (Alspector 1989, p. 30). Learning can be viewed as a statistical problem in parametric

estimation, where the model parameters are the connection weights (White 1989). Statistical consider-

ations, such as the "design of experiments" problem in determining the training data set, and validity

of extrapolation, are important issues in designing: learning systems. The differences with ordinary sta-

tistical models are that neural networks function with massively parallel computation, are adaptive not

static, and the meaning of the parameters (weights) is quite different from the usual. Recursive statistical

algorithms can be adaptive but do not possess the other advantages of neural networks:

... neural networks also provide a greater degree of robustness or fault tolerance than

conventional von Neumann sequential machines. Damage to a few neurons or connections,

and minor variabilities in the characteristics of neurons, do not impair the overall performance

significantly. Furthermore, neural networks also possess the ability to gracefully handle incon-

sistent knowledge from different experts, or some degree of contamination in incoming data,

without too much degradation in its performance. (Kandel, Schneider and Langholz 1991, p.

98)

There are three basic types of learning. In supervised learning, each output of the input-output pairs

of the training set represents a value that a "teacher" knows to be the correct response to a given input.

In unsupervised learning, the data used to train the network does not include instruction on what the

correct output should be for a given input. In learning with reinforcement, the network receives feedback

from a "critic" that gives it a measure of its performance, but not the "correct answer" from the teacher.

Although many types of control strategies have been implemented with neural networks (see Werbos

1990b, 1991), the focus of this research is to explore ways in which the learning capabilities of neural

networks can be used to enhance fuzzy control strategies.
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1.2.3 Neural Network and Fuzzy Logic Interface

The manner in which neural networks represent information in the pattern of its weights and the conse-

quent activation of its neurons is quite compatible with fuzzy logic. Neural networks are applicable to

problems

... where incoming information is often slightly inaccurate or incomplete and a choice must

be made from many alternatives .... Each of the many possible solutions to a problem can

be thought of as a true-or-false proposition .... When a conventional [algorithm] solves the

problem, it goes through each proposition one by one and determines whether that propo-

sition is true .... A neural net making a decision doesn't consider whether these individual

propositions are strictly true or false. Instead, each proposition has weight, which might

be characterized as the strength of the network's 'opinion' as to whether it is true or false.

(Allman 1989, pp. 94-95)

The activation of a neuron can be viewed as an indication of its degree of confidence that an associated

feature is present, or as the degree to which a proposition is true, rather than merely providing a yes or

no indication. Alternatively, the activation may represent the proportion of a feature that is present.

Much work on fuzzy set theory can be related to both these interpretations of activation.

... The key elements of cognition are not numbers, but labels of fuzzy sets (i.e., classes of

objects in which the transition from membership to non membership is gradual rather than

abrupt). This, essentially is what the notion of 'activation' is designed to capture. (Khanna

1990, p. 13)

Fuzzy logic provides a means for linking the symbolic processing of linguistic con-structs and qual-

itative relationships with numeric computations using precise, detailed algorithmic manipulations of

quantitative information, both essential to real-world tasks (Pao 1989, p. 223). In the area of fuzzy

control, neural networks are the instruments for implementing this linkage in two key ways (Takagi 1990,

p. 14). First, the member-ship function gives a measure of compatibility of a numeric description with

a qualitative entity, such as the linguistic object "process state x is negative big." The activation of a

neuron can represent the fuzzy degree to which such a linguistic concept is true. Or, it can give a measure

of the possibility that the concept corresponds to a particular set of numeric data (Pao 1989, p.23). A

neural network can be trained to synthesize membership functions representing a particular linguistic

con-cept. This method might be used to construct membership functions that are not as arbitrary and

subjective. Second, the learning of fuzzy control rules is a situation where a complete set of rules is not

available a priori, but a suitably chosen set of process data can be used to train the network to generate

those rules.
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Neuralnetworkshavebeenproposedasameansto implementfuzzycontrollers(Rocha1991;Gupta

andGorzalczany1991;Glorennec1991;Yager 1991; Czogala 1991; [wata 1990; Horikawa 1990; Gupta and

Pedrycz 1989; Gupta 1989). In these studies, the linguistic labels for process state and control variables

are presumed already given, and it is the "if-then" associations between these which are learned. The

learning requires that all or some of the rules are already obtained by other methods, since the aim in these

studies was to express knowledge derived otherwise. In Patrikar and Provence (1990), control rules are

learned when none are known a priori, but a set of performance evaluation rules must be pre-established.

A self-organizing neural network controller of limited applicability is reported by Nakanishi (1990). Recent

work (e.g., Yamaoka and Mukaidono 1991) uses feed-forward networks with pre-determined fuzzy sets to

identify the fuzzy rules relation from process input-output pairs, but from such a model the control must

yet be derived. All of these methods use the back-propagation learning'algorithm, which is a supervised

scheme and is notoriously slow. Other research (e.g., Takagi and Hayashi 1988; Furuya 1988) has focused

on feed forward networks to learn membership functions. These are superyised learning methods requiring

a priori knowledge about the fuzzy sets in order to construct the training sets. Yamaguchi (1991) used an

unsupervised neural network to learn membership functions directly from process data, but the number

of rules and their form are pre-establish'ed.

Although these results are useful and impressive, more research is needed in developing fuzzy con-

trollers that learn unsupervised from experience the necessary controls using neural networks. It should

be possible for a controller to generate effective control rules and membership functions using process

data but little or no prior information.

"Learning in uncertain or unknown environments, particularly autonomous or unsupervised learning,

is an essential component for any intelligent system. The ability to garner new information, process it,

and increase the understanding and capability of the system is crucial to the performance of autonomous

intelligent systems. Such systems should be able to learn in an unsupervised situation by experimentation,

classification, and recognition of similarity, and to generalize and apply appropriate previous solutions

or hypothesize new solutions to situations never before encountered by the system." (Kandel, Schneider

and Langholz 1991, p. 98)

1.2.4 Overview of Fuzzy Logic Applications to Research in Space Exploration

In recent times, a considerable amount of attention and theoretical results in fuzzy control and expert

systems have been directed to problems in space exploration. The reason for this interest is simple.

Automation through fuzzy control is particularly well suited to this domain primarily because human

involvement is currently essential in carrying out even "basic" mission functions, such as spacecraft control

and data acquisition/analysis. Research into space-related applications of fuzzy controllers and expert

systems in large part has two functions: i) as an aid in developing control systems that emulate human
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reasoningpatternsinorderto minimizeor eliminatetheneedfor humanparticipationin certain tasks.

and ii) enhancing the performance of traditionally automated systems. The following selected discussio,,:

of some aspects of recent research relative to applications of fuzzy control and expert systems to space

exploration is intended to provide some insight into this bristling research area, and provide appropriate

background to the research activities and results reported here.

Vachtsevanos and Davey (1987) proposed the use of a fuzzy controller to locate, diagnose and correct

component faults in a proposed space station thermal control system. This intelligent controller works in

concert with a classical controller of the system's fluid flow in order to: i) maximize sensitivity to failure

detection, while simultaneously ii) minimizing the rate of failure detection false alarms of all components

comprising the thermal control system. Diagnosing a fault in a component requires the accumulation

(through parity space representations, analytic redundancy and limit checking) of symptoms by the

intelligent controller. The fuzzy rule base and a compositional rule of inference provide degrees of fault

severity depending on the prevailing system conditions. A similar approach is taken in developing the

algorithm that actually identifies the faulty component. Monte Carlo simulations on a system of 100

components demonstrate that faults are correctly isolated, but the required computation time increases

considerably along with the order of the system fault.

In Lea (1988a and 1988b) a discussion of efforts to develop fuzzy expert systems to control spacecraft

during unmanned missions is provided. Using established results from previous Space Shuttle-related

research, the goal was to develop an effective piloting system that automatically controls fuel consumption

and plume effects. The chosen membership functions are the pi and S functions because they can easily

reflect varying degrees of "fuzziness" through parameter modifications and hence model a wide variety

of pilots-from those who must always keep the target dead center to those who merely need to maintain

visual contact with the target. Improvements were required in the fuzzy decision rules and scope of

the prototype system, which only deals with proximity operations and not all phases of rendezvous

operations. Consideration is given to using a fuzzy computer chip to alleviate computation, which would

be particularly useful in developing rotational and translational controllers for spacecraft. Several mission

profiles were to be simulated to determine requirements for sensor accuracy, system redundancy and

propellants.

Additional efforts by NASA to develop fuzzy control for an autonomous navigation system that would

eliminate a current data filtering problem were also provided by Lea (1988). During mission phases when

the Shuttle is beyond rendezvous radar range, the star tracker (ST) is used to track a target. Angles

calculated by the star tracker are used to update the navigation system, but since the ST is equally

capable of tracking all bright objects, tracking false targets (e.g. stars and debris) is not uncommon.

To prevent such errors, the crew edits the star tracker data before passing it on to the filtering system

using, in effect, a fuzzy decision rule. Hence, an expert system is developed and is found to perform as
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wellascrewmembers.Thissystemis thenexpandedto periodicallyexaminedataduringST tracking

intervalsandeithernotifiesthecrewor updatesdatausingfuzzyweighingfactorsdependingonhow

suspectthedatais. Theproblemof randomswitchingbetweenInertialMeasurementUnits(IMU's)is
alsoexamined.It appearsthatsuccessfulandencouragingresultsusingfuzzycontrolhavealreadybeen

obtainedbythisteamofresearchers.Futureworkwasto includedesigninganexpertsystem(ONEX)to

performthemajorityof taskscurrentlyrequiredbyengineerssituatedat groundcontrolconsoles.

VillarealandShelton(1990)describetheimplementationof aSpace-TimeNeuralNetwork(STNN)

arisingfromtheneedforamodelthatcanautomaticallyassociatespatialinformationwithitsappropriate

positionin time.Thenetworkis createdbyreplacingthesinglesynapticweightbetweentwonodesof
astandardbackpropogationneuralnetworkwithseveralweightsrepresentingtemporaldependenciesas

wellasassociation.Thenetworkiscomposedof two or more layers of interconnected nodes and buffered

by sigmoid transfer nodes at the intermediate input and output. Network performance is based on

simulations of the classic XOR problem, unsolvable by a simple two-layer network and the learning and

modeling the dynamics of a chaotic system. Future research was proposed using the STNN to model

more complicated dynamical systems applicable to adaptive control.

Lea, et. al. (1992) proposed using the STNN for detecting the "skiprope" phenomenon-oscillation

of a tether and its payload due to the Earth's magnetic field. The STNN filters gyroscopic data from

the payload to detect and predict the magnitudes, phase and (x,y) coordinates of the tether's midpoint

during these oscillations. Experimental results show that the STNN's accuracy in predicting skiprope

amplitudes varies considerably, and does not perform well in predicting skiprope phases. However, the

STNN did perform well in predicting the tether coordinates. Although current techniques using Kalman

filters are not particularly accurate, there is no question of their validity, unlike the STNN which has not

seen earlier applications and requires very time-consuming, detailed verification. The next goal was to

configure and train the STNN with a data set and then evaluate its performance.

Continuing their research in tethered satellite control, Lea et. al. (1992) proposed a fuzzy controller

to monitor tether lengths. A fuzzy rule base and membership functions to command an electric reel were

defined and compiled to computer source code using fuzzy development software. The controller was

evaluated by both a massless tether simulation and a finite element model, which represents the tether

as beads, each assigned a mass, strung together with springs. In the massless case, the fuzzy controller

exhibited better control than a conventional controller, eliminating length error spikes. Additional criteria

were used in evaluating the fuzzy controller with the bead model simulation, particularly in-plane and

out-of-plane liberation amplitudes. If these become too great while retrieving a payload, a phenomenon

known as "wrap around" can occur, which could seriously endanger the shuttle and its crew. The

fuzzy controller demonstrated its superiority over the conventional controller as it reduced the liberation

amplitudes by more than half. However, because the dynamics of a tethered system are so complex,

oo,,
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neitherfuzzynorconventionalcontrollerscaneliminatethe"skiprope"effect,andmanualmaneuvers

with thrustersmustbeused.Futureworkwasto includetrainingfuzzylogic/neuralnetworkbased

controlsystemonpastdatathatcouldpossiblydampandcontrol"skiprope"activityduringa mission.

Karr,Freeman and Meredith (1990) improved the performance of a docking controller using a genetic

algorithm to determine performance-enhancing membership functions. Berenji, Jani and Lea (1991)

applied the approximate reasoning based intelligent control architecture (ARIC) in the development of a

Space Shuttle attitude controller. The two primary components of the ARIC model are the Action-state

Evaluation Network (AEN) and the Action Selection Network (ASN). The AEN constantly critiques the

actions recommended by the AEN and attempts to predict reinforcements associated with the various

input states. The ASN includes a fuzzy controller, composed of a fuzzifier, rule base, decision making logic

and defuzzifier. The controller output is the correcting torque required from the thrusters. Examining

the full learning capabilities of the ARIC architecture in this context will require further study, but the

initial results are said to be very positive. It is expected that this approach will be adapted for camera

tracking systems, trajectory control for the Mars rover and tether control systems. We note that the

ARIC, though a reinforcement learning controller, still uses backpropogation schemes in both the AEN

and ASN networks.

Lea and Jani (1992) provided a detailed and didactic overview of past, present and future activi-

ties of the Software Technology Branch at the Johnson Space Center relating to fuzzy control. Past

accomplishments included fuzzy control systems for sensor data processing, translational, rotational and

attitude control of spacecraft and a fuzzy-based concept for a camera tracking system (See Lea, et. al.

(1992)). Efforts were in progress to combine into one controller the existing translational and rotational

controllers. Test plans were in the preliminary stages, with details such as initial conditions still to be

defined. Considerable effort was also being devoted to the development of pattern recognition and ob-

ject identification algorithms with the intent of extending the capabilities of the camera tracking system

into image processing. Also under investigation was the fuzzy control of the Mars rover during sample

collecting missions. To collect samples, the rover must travel between destinations among obstacles that

prior to the actual excursion cannot be identified. Fuzzy control and planning provides the rover with the

capability to identify hazards from imprecise sensor measurements of obstacle size and distance, as well

as taking "evasive action" as hazards present themselves since communication times between Mars and

Earth based control are extremely long and could jeopardize the success of the mission. The controller

receives a target point and uses position errors in the x and y directions in conjunction with orientation

error to command the rover in terms of steering angle and velocity from a fuzzy rule base of 112 rules.

The rover is driven towards the x-axis of a control error frame while commanded to the proper orientation

and slowly driven towards the target. While several test cases have yielded accurate control, it is believed

control of the rover can be improved even further by altering the membership functions corresponding
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to inputsandoutputs.Futureprojectsat theJSCincludeapplyingtheaforementionedcameratracking

systemto trafficmanagementaroundaspacestation,incorporatingthereinforcementlearningtechnique
to thetranslationalcontrolofaspacecraftduringrendezvoussequencesandthedevelopmentof afuzzy

rulebaseandmembershipfunctionsfor a fuzzycontrollerfor the livingquartersof thespacestation

Freedom.(HealthMonitoringSystemfor EnvironmentalandLifeSupportSystemfor LargeVolume
Crew Quarters)

A fuzzy tracking controller which commands the camera gimble drive pan and tilt rates utilizing range

and horizontal and vertical position data as input is discussed by Lea, et. al. (1992). Range data is

fuzzified and used in conjunction with five-rule base to determine the scale factor, which is then defuzzified

into a crisp value. Reported results indicated excellent controller performance with the tracked object

maintained in the center of the field of view (FOV). Future goals were to: i) modify the membership

functions to maintain the object in a narrow range, ii) incorporate range data directly into the fuzzy rule

base, thus eliminating the intermediate scale factor, iii) implement angular velocity rules, iv) implement

centroid algorithms, and v) transfer the rule base to a fuzzy chip that will interface directly with the

camera motor drives.

NASA's growing interest in fuzzy control and artificial intelligence research is further evidenced by the

organization's hosting of conferences, such as the NASA GSFC Fuzzy Logic Workshop and the Goddard

Conference on Space Applications of Artificial Intelligence.

1.3 Research Project Objectives

From our survey of the literature dealing with the applicability of fuzzy logic and neural networks in

Space Exploration and Navigation, as well as conversations with the Software Technology Branch of

NASA's Lyndon B. Johnson Space Center in Houston, primarily Dr. Villareal, it appeared that several

opportunities existed where beneficial use could be made of various aspects of our work including, but

not restricted to, our new adaptive fuzzy neural network controller.

The goal of our proposed effort was therefore multidimensional. Over the years, we had embarked on a

dynamic research mission and developed an array of modeling, optimization, and control techniques with a

generality of applications. We have tested them, with considerable success, in various arena particularly in

socio-technical systems such as medical decision making and water resources and environmental pollution.

We were desirous of applying them to relevant in space exploration. From our review of the applications

of a subset of our techniques in space exploration (sect. 1.2.5) there appeared to be a gamut of reasonably

well defined problems facing NASA that have been successfully attacked by, as well as others that are

susceptible to, the tools at our disposal. Further, and quite important, we had identified at least a group

of researchers at the Software Technology Branch of the Johnson Space Center (JSC) interested in our

22



expertiseaswellaswillingto workwith us. Our goalwasthento developthisrelationshipfurther
in orderto gainanarticulateunderstandingof NASA'sproblemsof interest,sharpenour toolswith a

viewto applyingthemcost-effectivelyto NASA'sproblems,andthenbecomea contributingmember

ofNASA'sspaceexplorationeffortsonasubstantialbasis.In viewof theforegoing,weestablishedthe

followingresearchobjectivesof interestto theongoing activities relative to efficient application of fuzzy

logic, neural networks, and optimization to autonomous orbital operations at JSC but specifically control

of tethered satellites:

1° Improve accurate interpretation of sensor and other measurements for deriving accurate state infor-

mation prior to optimal control through the design of optimal clustering and classifier algorithms.

This is of fundamental importance in the design of computationally efficient fuzzy logic and neural

networks.

,

,

4.

Contribute to the design of computationally efficient neural networks for space systems applications

through the development of efficient dynamic programming-like methods and algorithms for the

efficient implementation of reinforcement learning in adaptive neural networks.

Apply the algorithms developed from 1.4.1. and 1.4.2. above to some data and, if possible, from

the various high fidelity simulations at JSC by the Software Technology Group (STG). Compare

them with other clustering research using, if possible, similar data from tethered satellite system.

Apply the new neural network under development in our laboratory to test bed data from the STC-

JSC simulations and compared to other neural network simulations, possibly Lea and Villareai, et.

al. 1992.

Each of the foregoing goals was achieved and exceeded in instances during the duration of the project.

A major outcome is the development, testing, and application of the statistical fuzzy associative learning

controller, SFAL-C, to an array of sample problems, both prototypical and novel. An overview of the

controller design, components and performance is given in Chapter 2. In Chapter 3, we provide a more

detailed account of the controller and its properties as extracted from Chapter 5 of J. A. Murrell's doctoral

thesis which was funded in part by this project and supervised by the PI. Modifications and requisite

extensions to the controller are presented in Chapter 4. In Chapter 5, we discuss the development

of efficient clustering methods. In Chapter 6, we outline the development of a new fuzzy dynamic

programming methodology. In Chapter 7, we consider two problems of import to NASA and applied the

controller to these problems. In particular, the problems of tethered satellite system retrieval and power

system stabilization are considered in greater detail.
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1.4 Resume of Principal Research Results

Prior to discussing the essential components of the Controller vis--vis the stated objectives above, let us

summarize the salient properties and contributions of this research project. This controller has several

unique features mentioned earlier which we summarize here. It is an adaptive controller which is well

suited to the on line control of complex processes. [n particular, it has been shown to be capable of

learning effective control using process data and improving its control through on-line adaption.

The controller performs a fuzzy discretization of the state and control spaces and learns the fuzzy

relations for these fuzzy subsets using various learning schema including a variation of the TD method

with its dynamic programming inspirations. Other more sophisticated and improved learning protocols

are in progress in our laboratory. While it adapts both the membership functions and the control rule

state-control association, the controller primarily learns the control rule associations, unlike many other

methods which fix the rules and adjust the membership functions. Most important, it does so for the

entire state space. Additionally, no training data sets nor any error signals derived from knowledge of

the desired plant trajectory are needed.

The properties of the controller have also been rigorously tested via well designed statistical exper-

iments. This self-learning controller has been validated and successfully applied to a number of classic

problems including the inverted pendulum problem, the DC servomotor position control problem, the

switching problem in a distributed Communications network, and the power system stabilization problem.

Comparisons of the functioning of the controller as well as its effectiveness with those of other controllers,

particularly those of the fuzzy or neuro-fuzzy variety , were made both theoretically and via some test

problems. See for example the communications network problem of Chapter II.

To repeat the summarization presented in Murrell(1994), one of the principal developments of this

research includes a feasible and practical tool for the application of fuzzy generalization to the discrete

rules or associations of action -response utilized in reinforcement learning methods. Another important

and novel characteristic of the controller is the manner in which it integrates the information derived

from the fuzzy associative reinforcement learning process into the adaption mechanism for the fuzzy

discretization pre-processing transformation. The resultant effect is that the location of the fuzzy clusters

is both a function of the distribution of the states as well as the regions in the state space which are

most significant in determining the appropriate controls. Clearly, the importance of the location of these

fuzzy clusters in the optimal development of the controller can not be over-emphasized and hence the role

of optimal fuzzy clustering techniques in future enhancements of the performance of the controller. For

work in this arena which is beyond the scope of this project, see the Appendix where the developments

of Esogbue and Liu(1996) can be found.
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1.5 Complexity Analysis of Controller Algorithms

To determine the size of the problem, one must consider the number of state space dimensions p and the

number of control space dimensions q. Recall that the size of the spaces must be used in deciding the

number of fuzzy subsets utilized in the fuzzy discretization of these spaces. As a consequence, the size of

the problem in terms of the complexity of the controller algorithms, must also be expressed in terms of

the number s of state space terms (i.e., the number of state space nodes N_) and the number r of control

terms.

The state space node map approach permits increasing the dimension of the input state vectors

without an exponential increase in controller complexity. We note that other fuzzy discretization schemes

generate a complete set of fuzzy subset terms for each dimension of the state, thereby greatly increasing

the number of fuzzy rules as the dimension increases. In general, the usual number of rules is l p * raq

with l and l the number of state terms per dimension and the number of control terms per dimension

respectively. In the proposed method, the number of state terms s is the number of map nodes. This

is ,in general, selected according to the size of the state space p so that every dimension of the state

space can be adequately covered. However, s need not be set in such a way that it grows exponentially

with p, since we can elect to cover the state space more sparsely than with a full factorial lattice. Since

fuzzification is of the state space vectors rather than merely within each state dimension separately,

the generalizing and interpolating characteristics of the fuzzy inference can exploit any smoothness or

redundancy in information in all the dimensions simultaneously. Also, the adaptation of the location

vectors and spreads tends to move the coverage of the membership function to regions where it is most

needed in the state space. The number of rules is determined by the product sr, which can be chosen to

grow with p and q more slowly than exponentially. Whether the number of nodes needs to be increased

as the dimension increases is a matter of discretion involving a trade-off between the precision of the

fuzzification and an increase in the number of nodes. In discussing the size of a problem , we must

also consider the number of input data points. For on-line control, there is no fixed number of input

data points, rather there is a potentially infinite sequence of data. However, there are some types of

algorithms, such as recursive least squares or some types of adaptive clustering algorithms which would

require either the complete past history or the history for some period into the past to be stored and

used in the computations performed at each time step as a new data point becomes available. The usual

clustering algorithms, for example, would require a pass through a set of past data for each additional

point, greatly adding to the complexity of the computations as time advanced. Incremental parametric

algorithms, including many neural network algorithms and the algorithms proposed here, do not have

this drawback. Let us now discuss the complexity of the computation for one time step of the SEAL

controller.

We begin with the SFDN algorithms. Computation of a_ requires s sets of computations, one for each
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node;eachof theseincludesoperationsthatmustbeperformedoneachstatedimension,i.e.,p times.

For one step of the SFDN algorithms, the number of computations is bounded above by Ms + Nsp + L

(for some integer l, M, and N), and thus the order of complexity is O(sp).

In the SLFCN algorithm, while in principle, the quantities 7ij require, sr computations, the simplified

algorithm utilized by Murrell(1994) with 7ij as an indicator,needs only r computations. On the average,

even this can be made smaller. Obtaining all the bj similarly requires st, or simply r computations,

depending on whether or not 7ij indicates more than one node Ni. The ci_ require st, or actually

s' (k)or computations, where again s' (k) decreases with time down from s. The SLFCN therefore requires

Mr + Nsr + L operations (L, M, N some integers, different from above),and as such has complexity O(sr).

The IFCN requires only a few arithmetic operations performed sr times to obtain the g,j from the

cij, and sr computations to obtain b = aTG leading to a complexity of O(sr). The CAN similarly needs

only r sets of simple arithmetic operations, while the PES needs only 1 small set of arithmetic operations

per time step.

Thus, one iteration of the entire controller algorithm has a complexity of O(sp + st). Let us next

address the problem of the number of iterations that may be required.

To learn the control law as a fuzzy relation matrix, requires that s pieces of information be learned or

estimated. This is accomplished by a stochastic search of r* combinations which could be of formidable

complexity. However, the algorith m does not try each combination one at a time. Each SFDN node is a

learning unit which explores only r possibilities, in parallel sequences of learning trials with all the other

nodes. If the reinforcement signals were based on performance scores that were absolutely accurate and

certain, then in principle, each control choice for each state need be visited exactly once, hence requiring

only sr iterations of the controller algorithm. However, since the information is uncertain in a Statistical

as well as a fuzzy sense, some multiple of sr is required to obtain an adequate sample of information.

A conservative analysis shows that , with a probability greater than 0.98, the controller can generate a

complete set of performance predictions in approximately 4r plant runs.

1.6 Research Extensions for Application to Space Systems

1.6.1 Efficient Clustering Algorithms

The importance of cluster analysis as a tool in pattern recognition is well recognized. Basically, we may

view the task in hand as that of dividing a set of K data points into N clusters in an optimal fashion

where the number N may be a preassigned integer. Clustering can be done both classically and via fuzzy

set theory. The latter generally recognizes the following two problem classes of interest: The first one is to

group fuzzy data points into some fuzzy sets. The other is to divide the crisp data points into a specified

number of subsets which need not be fuzzy but utilizing fuzzy set theoretic methods in developing the
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clusters.

Ourfocusisonfuzzyclusteringwhoseliteratureinrecentyearshasgrownincreasinglyvast.Perhaps,

theearliestreferenceto fuzzyclusteranalysismaybe tracedto Bellmanet al. [4] and Ruspini [62].

According to Yang [73], the studies of cluster analysis employing fuzzy set theory can be divided into

three categories: fuzzy clustering based on fuzzy relation, fuzzy clustering based on objective function,

and the fuzzy generalized k-nearest neighbor rule. The first one, fuzzy clustering based on fuzzy relation,

was first proposed by Tamura et al. [68]. They presented a multi-step procedure by using the composition

of fuzzy relations beginning with a reflexive and symmetric relation. The second and more interesting

to us is fuzzy clustering based on objective function. This approach is best illustrated via the method

proposed by Dunn [20] and generalized by Bezdek [7].

In the sequel, the use of the concepts of fuzzy prototype as opposed to crisp prototype as well as fuzzy

criterion for optimal clustering was presented. Numerical experiments show that fuzzy criterion clustering

based on fuzzy prototypes can overcome the effect of noise points. Its effectiveness was demonstrated for

these and other studies reported elsewhere. The validity issue was also addressed.

This method which we have termed fuzzy criterion clustering has the capability of accurately classify-

ing and detecting typical clusters including circles, ellipses and various shapes that have posed problems

for some well known algorithms reported elsewhere in the literature. Additionally, it is robust and appeal-

ing to practitioners because of its user driven fuzzy criteria clustering objective function. Applications to

the clustering of real world data arising from water pollution control studies as well as MRIs in cardiac

sequence detection experiments are in progress in our laboratory.

1.6.2 Efficient Dynamic Programming Methods

FLlzzy dynamic programming is a powerful control and analysis apparatus which seeks to extend clas-

sical dynamic programming to many real life situations characterized by uncertainty, especially of the

imprecise and ambiguous variety. Penetrating reviews of the developments in the field of fuzzy dynamic

programming as well as an insightful discussion of possible extensions are provided by Esogbue and Bell-

man [23] and recently by Esogbue and Kacprzyk [27]. A particularly interesting generalization involves

decision situations in which the decision, constraints, goals, and system dynamics are all fuzzy as given is

treated by Baldwin and Pilsworth [2]. The details of these concepts and proofs are provided in Liu and

Esogbue [55]. We present the framework for fuzzy criterion set and fuzzy criterion dynamic programming

which is a general tool for dealing with many decision and control situations arising in many fields in-

cluding the stochastic reservoir operation and stochastic inventory control models of operations research

and engineering. Specifically, the objective is to maximize the expected fuzzy criterion function of the

product of fuzzy criterion sets. We outline existence, uniqueness and stability theorems of the derived

solutions to this model whose resultant optimal control is a bounded critical number policy under the
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usualregularhypothesisassumptions.

1.6.3 Application: Tethered Satellite System

The tethered satellite system problem represents a highly nonlinear control problem with five state

variables, which is considerably more than the usual test problems found in the literature. A tethered

system is any two or more bodies connected by a long thin structure. The system focused on in this

example is the deployment, station-keeping, and retrieval of a target satellite from the Space Shuttle. With

a fixed-length tether for systems in the 'station-keeping' phase, the equations of motion are still complex.

With a variable length tether--i.e., for systems in the deployment or retrieval phase---the equations of

motion are further complicated by time-varying coefficients. We examine the tethered satellite system

retrieval problem in more detail in the sequel.

1.6.4 Application: Power System Stabilization ""

With the lack of simulation data from STC-JSC, we elected to apply our control algorithm to a problem

that may be of interest to NASA as well as one that illustrates the controllers properties and effectiveness.

One of the most intriguing and frequently investigated problem areas for deploying potent and novel tools

of control engineering is the power system stabilization problem. Many different control strategies as well

as controllers have been tested on this problem. Part of this interest is engendered by both the challenge

and intractability of power systems which are characterized by the existence of power inherently complex,

nonlinear, time-varying and indeterminable elements, simple controllers which work well in one situation

may not perform equally well in another. As part of the experimental investigations with the SFAL

controller, we explored its ability to learn a robust control law to stabilize the power system under

various operating conditions.
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Chapter 2

The Neuro-Fuzzy Adaptive

Controller: An Overview

2.1 Introduction

Solution to control problems in which there is considerable uncertainty or lack of knowledge about the

process is the focal concern of our research mission. The class of problems used as the leitmotif of our

work may be subsumed under the rubric of what is generally known as the general set-point regulator

problem. This group encompasses the usual dynamical system plants as well as discrete state space

problems which arise in the control of operations and manufacturing. Our work has focused on the

development and demonstration of the potential of the proposed Statistical Fuzzy Associative Learning

Controller in simulated applications to three representatives of this class of problems, namely, process

control of particular second-order dynamical systems, message routing in communication networks and

the power system stabilization and control problem . In each, there are complexities and uncertainties

which call for intelligence, but intelligence which can be automated for speed and repeatability.

Classical analytical and optimization approaches generally require some type of model of the plant and

specific knowledge of what constitutes desirable plant behavior. For cases where the lack of knowledge is of

a high order, a variety of intelligent methods have been suggested to provide more acceptable performance

than can be achieved with the classical methods. In our review of existing approaches(Esogbue and

MurreU 1994), it was shown that many of them consist of off-line empirical modeling using a training

set of data. There are many instances in which these approaches work well for control of uncertain

systems. However, a training set generally requires some knowledge of what constitutes good control,

and in uncertain systems, this is often lacking. Also, many systems are based on an explicit gradient-type

of approach, such as the well-known back propagation neural networks with their attendant drawbacks.
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It is alsonoteworthythat someof theseproblemsareframedin termsof discretespaces,donothave
objectivefunctionswhichareanalyticallydifferentiable,oranyknownobjectivefunctionformulaat all.
Hence,gradientmethodswhichproliferatein the literaturemaynotbeapplicable.

An alternativeapproachto controlwhichhashadnotablesuccessis that of fuzzycontrollers,which

mathematicallymimicthe imprecisereasoningprocesseswhicharean importantpartof whatmakes

humanssosuccessfulat solvingproblemswith largeuncertainties.However,theproblemhasbeento

findeffectivewaysto captureoracquiretheknowledgeorskillrequiredforaparticularproblem.Recent

researchhasbeendevotedto waysof integratinglearningalgorithmswith fuzzycontrolto automate

theknowledgeacquisition.Mostoftheattemptsto combinethepoweroffuzzyreasoningwith learning

capabilityhavetakeneitherof twoapproaches.Oneapproachhasbeento implementfuzzyreasoning
withAI-typerule-basedmethods.Theresultingcontrollermodelscanbecomequitecomplicatedand

cumbersomeastheyarescaledupto largersystems.Thesecondapproachis to usegradient-typeneural

networkscombinedwith fuzzylogic. Although these have been used s_ccessfully in some applications,

they share the limitations of gradient methods.

It is now believed that learning systems (in the sense of mathematical learning theory) may be the

most appropriate for the problems with a high order of uncertainty. A reinforcement learning trial

system can learn on-line from its own experience with the process it is designed to control. Although

such systems have been suggested, since the 1960_s, their applicability has been significantly inhibited by

the almost exponential growth in complexity as it is scaled up to larger systems due to the necessity of

discretizing the spaces. Combining these methods with fuzzy discretization and fuzzy logic can make

learning trial methods a viable, practical approach. However, until the research first reported in Esogbue

and Murrell(1993), and then furthered by Murretl(1994) and Esogbue, Hearnes and Song (1995), very

little development of this idea has been seen in the literature.

These problems are second-order linear and nonlinear dynamical systems of the type which often

occur in industrial process control. In these problems, uncertainty about the true plant model is often

introduced by the environment, or by frequent changes in configuration necessitated for example by flex-

ible manufacturing practices. Additionally, unknown, time-varying and nonlinear dynamics complicate

the use of the plant model required by classical control theory methods. These concerns, necessitate the

pursuit of novel approaches of the sort discussed in the sequel.

2.2 The Self-Learning Fuzzy-Neuro Controller

In response to the quest for an intelligent controller that can learn online, does not require an exact

model of the plant, operates without the benefit of what is considered optimal, does not need a set

of predefined control rules, and uses feedback in an instructive way without the attendant expensive
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computational costs, Esogbue and Murrell [24] reported the development of a self-learning fuzzy-neuro

controller with unique features and capabilities. This controller consists of five parts: (1) the Statistical

Fuzzy Discretization Network (SFDN) which employs a variation of the Kohonen self-organizing map

(SOM) to fuzzily the state space of the plant; (2) the Fuzzy Correlation Network (FCN) which implements

the learned fuzzy control rules as fuzzy relation; (3) the Stochastic Learning Correlation Network (SLCN)

which maps a particular fuzzy state to a set of fuzzy control actions through an adaptive stochastic

algorithm; (4) the Control Activation Network (CAN) which defuzzifies the fuzzy control to a crisp

control signal; and (5) the Performance Evaluation System (PES) which provides feedback reinforcement

signals to the learning algorithm based on the effectiveness of the control action. A block diagram of the

controller is shown in Figure 2.1.

r(k)

PES

SLFCN

SFON
CONTROL PHASE

IFCN CAN

Figure 2.1: Block Diagram of Fuzzy-Neuro Controller
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2.2.1 Statistical Fuzzy Discretization Network (SFDN)

This subsystem consists of a network of automata nodes ("neurons") arranged in a grid. Each node

receives as its input the current process state vector. Every time a vector is input, each node computes

an output that represents the degree of membership in the fuzzy subset of the input space that corresponds

to that node. This output, called the node activation, is a measure of the degree of similarity of the input

state vector to the ideal or prototype member of that fuzzy set. It is computed as some combination

of the state vector and a location parameter vector associated with that node which represents the

prototype process state for the corresponding fuzzy set. Also associated with each node is a parameter

that encodes the degree of dispersion or spread of its fuzzy set membership function used to calculate

the node activation. For a particular membership function form, the location parameters and spread

parameter together define a fuzzy set. The SFDN thus performs a fuzzy discretization, inducing a fuzzy

partition of the state space X into reference fuzzy subsets Xl, X2 ..... Xr, each represented by a node in

the grid. -"

The network described here is an extension of Kohonen's self-organizing feature map to fuzzy char-

acterization of dynamic plant states. The output of the ita node in the map is

a_ = exp(-[I x - m_ H /31) (2.1)

where x is the state vector input, ml is the vector of location parameters and s_ the spread parameter

for the i th node, and it is assumed that the choice of similarity measure is the Euclidean metric and the

functional form of the membership functions is a gaussian function. Thus, the vector a of node activations

is the fuzzy hyperstate due to input state vector x:

a = r (2.2)

where _rx, (*) is the membership function for fuzzy set X, given by the foregoing equation.

A sequence of state vectors is input to the network over time, and an adjustment algorithm adapts

the location parameters to reflect the actual clustering of the state vectors by which the aggregation into

fuzzy subsets is determined. A simplified version of the update rule of the jth component of m, for this

example is

= f, m_j., + ak(zj,_ - m_3.k) for i • Tc_
m_j,k+l (2.3)t m_j,k otherwise

where k indexes the time step of the algorithm, Tch is a small neighborhood of nodes in the grid

within a radius ek around the node most activated by x_, and a_ and e_ are decreasing functions of k.

The basic concept for updating the spread parameter is given by

= J" s,,_ + r/_(Ixj,k - r%,_l 2 - s,,k) for i • Tc_
$i,k+l (2.4)[ s_,k otherwise

where t}k is also a decreasing function of k.
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TheSFDNprovidesa meansof aggregatingsimilarplantstates,thuspermittingimplementationof

thecontrolasa discreterelation.Theadaptationupdateequationsasinitially configuredareof the
simpledelta-ruletype,whichis moreeasilyimplementedin realtimethanclusteringalgorithmsand

permitstheparalleldistributedcomputationof neuralnetworks.

2.2.2 Fuzzy Correlation Network (FCN)

The Fuzzy Correlation Network implements the fuzzy control rules as a fuzzy relation G (learned by the

SLCN) which associates the collection of fuzzy sets X1,..., Xr for input vectors x E X with the fuzzy

sets U1 ..... U_ for the controls u E U. This is accomplished with a fuzzy associative memory (FAM)

or correlation network. The ith node on one side represents the degree to which X_ has been selected,

given by the SFDN node output a_ for state x. Each of these is linked to every node on the other side.

The output bj of the jth node on the other side indicates the degree to which fuzzy output set Us is

the correct choice given the activations of the X,'s, or the "firing strength" of each rule for which that

fuzzy control is the consequent. The connection weight parameter g,j indicates the degree to which X,

relates to Uj. The control rule "If x is X, then u is Uj" is represented by a strong link g,j between

node X, and node Uj. The network connection weight matrix G = {g,j} specifies a fuzzy relation on

{X1,...,X,-} × {U1,...,U,}. Thus, given input activation a, the fuzzy hyperstate, the fuzzy control

vector is given by ....

bT = a(aTG) (2.5)

where a is a vector-valued function whose components are bj = aj (arG., j), Ge, j is the jth column of G,

and each 0"5 is some type of limiting function, (i.e., a_ satisfies a,(a) ---* 0 as a _ -oo and a,(a) ---* 1 as

_ oc), such as a sigmoid function. Thus, this implementation uses the product and limited-sum logic

operators which is more easily implemented with a neural network associative memory than the common

min-max logic.

2.2.3 Stochastic Learning Correlation Network (SLCN)

The purpose of this subsystem is to test and learn the effectiveness of pairing a particular control vector

fuzzy set with each given state vector fuzzy set, using the performance evaluation provided by the Per-

formance Evaluation System (PES), then use this knowledge base to generate the fuzzy control relation

used by the FCN. Both the SLCN and the FCN receive as input the fuzzy hyperstate a output by the

state map grid of the SFDN. The first phase of operation of the controller is a learning phase in which

the fuzzy control vector b is generated by the SLCN. In the second phase of operation, the fuzzy relation

learned by the SLCN is used by the FCN to generate b.

Initially, nothing is known about what control vector gives the best response when the process is in

a given state. So, a fuzzy output is just picked and the performance measure indicates how good the
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selectionwas.If it wasnot that good,thecontrollerwill belessinclinedto pickthatcontrolagainthe

nexttimethesystementersthatfuzzystate.If theselectionwasgood,thatcontrolactionisreinforced,
sothatit ismorelikelyto beselectednexttime.ThenetworkthatimplementsthisisakintoNarendra's
stochasticlearningautomata(SLA).

TheSLCNconsistsofamatrixofnodeswhereeachrowcorrespondsto aparticularfuzzyinputstate

andeachcolumnto a particularfuzzycontrolaction.Thedegreeof activationof a nodeindicatesthe

fuzzydegreeto whichit selectsthecontrolfuzzysubsetto whichit isassigned.Eachnodehasaspread

parameterh_j for the ith fuzzy state and the jth fuzzy control. The location parameters )qj (scalar) are

adjusted so that they always fall at the center of the spread function. In this case, a box-shaped function

defined on a bounded interval is used. Thus, the output of the node for the ith fuzzy state and the jth

fuzzy control is given by

1 ifAii,t - h_j,t < _t < Ai:,t + hzj,te_j,t = 0 otherwise (2.6)

j-1
1

_,:,, = _ h,:,t + 5 h,j,,
k=l

(2.7)

where hij,t and Aij,t are location and spread parameters, respectively, at time t for node (i, j), and

(t E [0, 1] is generated by a chaotic or pseudo-random process and serves as the input to the node. The

node with the largest spread parameter is then the one that will have the maximum activation most

often. The fuzzy control vector b is given by

{ c_i,t for i = argmax (a,)bi't = 0 otherwise (2.8)

When i is the index of the most activated input fuzzy set, then the most activated node in the i th row of

the SLCN node matrix selects the control fuzzy set. The update algorithm for h_j is given as

h_i,t+l = (hij,t + rea_,tbj,eTij,t)/(1 + Z ai,tbj,tTij,t) (2.9)
]rt

{ h,:,t if rt < 0_/ii,t = 1 - h,j,t if rt >_ 0
(2.10)

where rt is the reinforcement which is a function of the performance measure Pt, and a_,t and bi,t are the

input and output activations, respectively, for the i th fuzzy state and jth fuzzy control at time t. The

product a_,t bj,t is the association or correlation between the state and control fuzzy sets. The quantities

Pt and rt are computed by the PES subsystem.

2.2.4 Control Activation Network (CAN)

The input to the Control Activation Network is the fuzzy control vector b. This fuzzy control is defuzzified

to produce a crisp output quantity u, which is a vector for multivariable control processes. Each CAN

node has its location parameter vector set to the desired control vector prototype levels. Its input is the
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vectorb, and its output is a crisp control vector u. The nodes can be set up as a map network to adapt

the fuzzy sets according to the control vectors that are actually being output from the controller.

Using the max criterion defuzzification method, the B_ node with the largest activation (degree of

truth) triggers the activation of the CAN node whose output is the prototype value fi3 corresponding to

the fuzzy set Bj. Alternatively, in the center of area method, u is calculated as the normalized weighted

sum over the fuzzy sets Bi in which the weights are the activations b_, given as

/J r

where sk are the spread parameters for the output fuzzy set membership functions. If the membership

function form is symmetrical, then the effect of the spread is trivial.

2.2.5 Performance Evaluation System (PES)

The particular nature of the plant or process to be controlled and the characterization of the desired

performance dictate the details of how the performance evaluation network is configured. When a per-

formance measure is available which is an analytical function of the plant states or output, then the

reinforcement signal re is simply a normalization of the performance measure Pt to lie in the interval

[-1,11 or [0,1]. It is often the case, however, that complex processes which have no known well-defined

plant model also do not have a well-defined formula for computing performance. Rather, there is a certain

qualitative goal or objective to be reached, but it is not known what the values of the plant variables

should be when that goal is reached. Even when a formula in terms of the variables is known, there is

often an unknown delay between the control action taken and the effect on the plant variables, so that

the result of the current control is not known until some future time. In such cases, various methods

of estimating the performance evaluation function must be used. Our investigation into performance

function estimation methods are reported elsewhere. In particular, we note the use of various dynamic

programming-like algorithms such as the temporal difference (TD) algorithm by Murrell(1994) and both

TD and Q-Learning by Esogbue et alia(1995).

The most straight-forward approach to the situation in which a qualitative determination of reaching

the goal is given only after a period of many time intervals is described here. Reaching the goal is

indicated by Pt --- 1 (success) and reaching forbidden states (such as plant shutdown due to variables

out-of-bounds) is indicated by -1 (failure). For each state entered at each time, a control action is taken.

The average performance over time of this state-control pair is computed and updated whenever there

is a success or failure. The reinforcement signal rt can then simply be the current value of this average

for the current state-control pair that just occurred. This method was used with success in the earliest

version of this controller.
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2.3 Implementation Issues for the Application of the Controller

In order to utilize this controller in its current configuration, the fo[lowing conditions must be met:

1. Ability to characterize the process at any given time by its process state.

2. Ability of the control inputs to affect the sequence of input states.

3. Availability of a good performance measure which is related to the system goal

4. There must be some topological nearness measure (e.g., a metric) for both the state space X and

control space U which additionally satisfies the smoothness assumptions listed below:

(a) For every x E X there exists a control u _ such that y(x,u _) = supueu{y(x,u }.

(b) If the optimal control for xi is u* then the optimal control for every x in a neighborhood of

xi is near u*.

5. There must be a direct relationship between the degree to which a control action contributes to the

final computed control and the probability of that action being successful when applied purely.

6. The process is either intrinsically recurrent or can be repeatedly restarted at random initial states.

We note that the nearness structure of the spaces stipulated in the foregoing conditions 4 can be

imposed or arrived at via some transformation of the original spaces. In particular, it is neither necessary

for the smoothness to possess analytical differentiability property nor the nearness to be cast in terms of

a metric which may be computed by a formula.

Let us finally outline the steps to be followed when trying to apply the controller to a system or

process which has met the conditions stipulated in the foregoing. These are succinctly summarized in

the flowchart for the algorithm in Fig. 2.2.

As usual, we begin with the set-up and initialization of the controller for the particular process as

outlined below:

1. Set the state space and control space boundaries.

2. Set the state map size and initial location and spread parameters.

3. Set the control terms (control space map).

4. Set initial correlation parameters.

5. Determine the sampling interval for the process.

6. Determine process events to be used to index algorithm steps for each algorithm:
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Figure 2.2: Flowchart for Implementation of Fuzzy-Neuro Controller
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(a) Map node location update.

(b) Map node location neighborhood decay.

(c) Map node location update rate decay.

(d) Spreads update•

(e) Correlation parameter update.

(f) Correlation neighborhood decay.

(g) Performance evaluation update.

7. Set controller learning parameters.

8. Determine a normalized performance measure to be computed at terminal states.

As in most algorithms, it is beneficial to have some basic knowledge or information about the process

such as its state and control variables as well their ranges. Using this knowledge, the state and control

space limits used by the controller are determined. Determining the number of nodes, the size of the crisp

neighborhoods, and the basic level of fuzziness or dispersion for the membership functions requires some

reasoning about what level of precision is appropriate for the process. The size of the state space region

to be covered and what level of resolution is required to resolve the control switching surfaces must be

considered. Ability to partition both the state and control spaces so that they can be fuzzy discretized is

essential. This relates to the issues of continuity and nearness discussed above• According to condition 4b

the control behavior for a locality in the state space must be generalizable throughout the neighborhood.

When no prior information is available, the map node locations are set at the points of a uniformly

spaced grid. If it is impractical to fill all the points of the grid, then design of experiments methods can

be used to determine a good subset of the full factorial coverage. The nodes can be placed with greater

density in regions where more coverage is needed if there is any prior information. Similarly, if there is

no prior information about the control relation, then one can set the correlation parameter vectors to

be uniform probability distributions. Any prior information can be encoded by biasing the distribution

vectorstowards favoredcontrolactions.

The operationthen consistsofrepeated cyclesofcomputing controlsto input to the plant,plantstate

transitions,computing reinforcements,and performing learningupdates. Whenever a terminal stateis

reached,such as a goal stateor set-pointof the problem, then a performance measure iscomputed and

provided to the controllerPerformance Evaluation System inorder to update itsperformance prediction

algorithm. The system isreset--i.e.,a new initialstateisdetermined and any algorithm counters,etc.,

are reset.The operation terminates ifitisdetermined that the attained performance isacceptableor

near optimal.
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As great as the properties of the controller are, we must emphasize that it is neither suitable nor

optimal for all control environments. In general, the most ideal problem situations for applying the

controller are those in which there exist a high tolerance for mistakes to be made for a brief period early

in the learning phase or which allow for initial learning with a simulated on-line system.

2.4 Controller Application and Performance on Sample Prob-

lems

2.4.1 Application to Inverted Pendulum Problem

A classic testbed problem for nonlinear controllers is the inverted pendulum problem. One of the simplest

inherently unstable systems known, yet it has a broad base for comparison throughout the literature. The

system is shown in the following Figure 2.3. _.

Model of Process

Mathematically, the system is described as follows: Inputs: State vector--x = [0, A#].

Outputs: Force applied (in Newtons)--u = [F] where F > 0 denotes a force applied in the positive x

direction.

Equations of Motion: These equations serve only to simulate the system and are not used in the

derivation of the control law:

/i= g sin 0 + cos # ( -F-'_Pt°_ si, a+.psgn(_) _ _
rnp-i-rne ] rnpl

;'rip +'rr'..c ]

F+ra,, sin0- OcosO)- .osgn
5! = (2.13)

mp -{- rr_ c

where the variables are defined as g: acceleration due to gravity, rac: mass of the cart (kg), rap: mass of

the pole (kg), l: half-length of pole (m), #c: coefficient of friction for cart (N), and/_p is the coefficient

of friction for pole (N) with values shown in Table 2.1.

g = 9.8m/s z rac = 1.0kg

rap = 0.1kg l = 0.5m

_c = 0.0N _p = 0.0N

Table 2.1: Parameters of Inverted Pendulum System Simulation.

Success and Failure: The setpoint for the inverted pendulum problem is [0, 0]. Failure occurs at either

of the following conditions:
IOl > 12 °

IA01 > 25°/s
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In a dynamicalsystemproblemsuchastheinvertedpendulumunderinvestigation,thesystemis
alwaysresetuponfailure(exceedingstatespaceboundaries),andmayberesetuponreachingthegoal

state;in all theexperimentsreportedin thisstudyforthis typeof system,resetisnotperformedupon
reachinga goalstate. Also,newinitial statesof thesystemareselectedrandomly.Theresultsof a

representativerunof thesimulationsaredepictedin thefollowingfiguresof thetrajectory(Figures2.4-
2.7),thephasespaceplot (Figure2.8),andthecontrolsurfaces,(Figures2.9- 2.10).

12

/ Ti : p10o
Figure 2.4: Product/limited sum inference, COA defuzzification (15N, Seed# 1)

2.4.2 Application to Communication Networks

The controller's performance was further tested on the communications network problem using first a

three node problem and then a larger ten node problem. The configuration for the later is shown in figure

2.11. Here, reset is upon arrival of the current message to its destination, and determining a new initial

state consists of observing where the next message arrives in the network. No failure state is defined for

the routing problem since every message eventually reaches its destination (network protocols prevent

endless cycling).

Comparison with Other Network Methods

The performance of the controller in the sample networks was compared to several other message routing

approaches known in the literature. A rigorous statistical analysis of the results indicate acceptable

performance which is equal to and superior in instances to the approaches in question. These results are
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Figure 2.5: Product/limited sum inference, MAX defuzzification (15N, Seed#l)
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Figure 2.6: Min-max inference, COA defuzzification (15N, Seed#l)
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Figure 2.7: Min-max inference, MAX defuzzification (15N, Seed#l)

reported in detail in Murrell [57]. A graphical representation of these results where the 89 percent and

95 percent confidence intervals show that both the controller and the dynamic shortest path algorithms

have statistically equal performance which is better than that attained by both the SLA and random

controllers. This is depicted in figure 2.12

2.4.3 Application to Power System Stabilization Problems

The earliest stabilizers consisted of a lead-lag analog circuit with the speed as the input. Such a simple

controller cannot satisfy the high standards of the power system. PID controllers [34] perform better

than the lead-lag circuit. Yet, unless their parameters are tuned automatically as operating conditions

change, PID controllers in general do not work satisfactorily within a wide range of conditions. The

self-tuning controller [12, 31, 53, 52] and the adaptive controller [9, 10, 36] are designed specifically for

this purpose. By continuously identifying the model of the plant, the self-tuning controller adjusts its

parameters to achieve optimal performance, while the adaptive controller adjusts its parameters based on

the knowledge of the plant model. These two controller paradigms are time-consuming in design but can

perform well under different operating conditions. Most recently, fuzzy logic controllers [32, 33, 35, 52, 64]

have been successfully applied to stabilize power systems. It has been found that the fuzzy logic controller

performs as well as the self-tuning controller in power system stabilization [52] and shows great potential

for application in power systems. When the system is of large scale and of high complexity, however,

it is not easy to extract the control rules from human expert(s) [39] and, even if this can be done, the
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Figure 2.11: A Ten Node Communication Network Problem
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expert's experience is still limited. Therefore, it is necessary to design a controller that can "learn" the

control law via its own experience.

2.5 Mathematical Models of the Power System

The system considered here is composed of a synchronous machine with an exciter and a stabilizer

connected to an infinite bus. The dynamics of the synchronous machine can be expressed as follows using

the linearized incremental model [34]. These equations serve only to simulate the system and are not

used in the derivation of the control law:

= M(AT._ - ATe -

ATL - DAw) (2.14)

A5 = 377Aw (2.15)

ATe = KeA5 + K2Aeq (2.16)

1

A_q = KaTd---.._(K3Ael d _

K3KaA5 - Aeq) (2.17)

AVt = KsA5 + KsAeq (2.18)

1 (KIA_I d- AVE) (2.19)=
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where

Vrel

AVo

Aefd

Aeq

AYr

u

AT_

AT_

ATL

A<i

Aw

KA, KE

TA,TE

KF

TF

KI,..., K8

Tdo

M

D

T_

1

(AVA - KEAeld)
1

TA (KAAV,_/ - KAAVF + KAU --

KAK6Aeq - KAKsA5 - AVA)

constant reference input voltage

terminal voltage change,

infinite bus voltage change

equivalent excitation voltage change

q-axis component voltage behind

transient reactance change

stabilizing transformer voltage change

stabilizer output

mechanical input change

energy conversion torque change

load demand change

torque angle deviation,

angular velocity deviation

voltage regulator gains

voltage regulator time constants

stabilizing transformer gain

stabilizing transformer time constant

constants of the linearized

model of synchronous machine

d-axis transient open circuit

time constant

inertia coefficient

damping coefficient

sampling period

(2.20)

(2.21)

(2.22)

, ._-:,._¢=

The objective of the controller is to drive the state of the system £ to [0, 0] via the stabilizer output u.

The values for the above parameters are given in Table 6.4 below.
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K1 = 1.4479 K2 = 1.3174 K3= 0.3072

/(4= 1.8050 Ks = 0.0294 K6= 0.5257

KA = 400 TF= 1.0 T4 = 0.05
D= 0

M = 4.74

ATm = 0

Tdo = 5.9

TE = 0.95

AV,.,I = 0

KE = -0.17

KF = 0.025

T, = 0.01

Table 2.2: Parameters of Simulation.

2.6 Simulation Results

We are interested in investigating the practicality and effectiveness of our newly developed controller in

stabilizing the power system whose model depicted in the foregoing section was used in the simulation

phase for system mimicking only but not for control purposes. The experiments run on the power

system stabilization problem consisted of multiple replications of the learning phase of the controller

on a simulated power system written in C. The inputs to the controller are Aw and A_b. Thus, the

controller in effect mimics a PD-like controller with unknown structure. The state space is defined as

Aw E [-0.012, 0.012] and A& E [-0.025, 0.025]. The number of nodes for the SFDN is set at N = 25 and

there are 5 reference control fuzzy sets defined for u E [-0.12,0.12]. Once the controller has completed

the learning phase, it is used as a stabilizer in the system.

Several experiments were run and an example.of the resulting controller is shown in the figures below.

Figure 6.8 shows the transient process of Aw when the load increases 0.05 pu and 0.3 pu, respectively.

It takes about 2 seconds for the speed deviation Aw to vanish for the 0.05 pu load change and about 3

seconds for the 0.3 pu load change. Figure 6.9 shows the learned control surface using product-limited

sum inference and center-of-area defuzzification.

2.6.1 Comparison to Existing Controllers

The simulation resultsclearlyshowed that the controllercan learn an effectivecontrollaw to stabilize

the system under varying load conditions.However, the results,are not optimal with regard to settling

time. The settlingtime obtained with our controllerwas slightlylongerthan the resultsobtained usingan

existingPID controller[341and a fuzzycontroller[351,but comparable toor shorterthan the settlingtime

forother fuzzycontrollers[32,33, 64] reported inthe literature.The optimalityissue(seeSection 2.6.2)

was subsequently investigatedfurther.The resultsof that inquiryare reported in Chapter V. Although

not optimal, the relativeease of developingan "efficient"controllervia the self-learningcontrollerwith

respectto the existingmethods demonstrates the potentialof thisapproach and infactsufficientlymeets

the objectivesofthisproject.

Despite the foregoing,the advantages ofour controllerover other controllersreported inthe literature

that have been applied to the power systems stabilizationproblem are very significantand should be
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noted:

• The controller successfully learned the control law via its own experience. It did not require the

analytic solution of a dynamical model, the tuning of parameters as in PID control, and it did not

rely on existing expert knowledge about the control of the process.

• The learning phase of the controller took less than 5 minutes to complete. Thus, there is a huge

time savings in development over the existing controllers.

• The internal controller parameters (that control the learning and other attributes) are very robust--

the parameters used for the inverted pendulum problem were used for the power system stabilization

problem. No tuning of these parameters was performed, although doing so might have improved

the resulting control.

• The resulting control is robust--the controller can handle a more extreme range of load changes

than the PID controller [34].

2.6.2 Reinforcement Learning and Optimal Control

The lack of optimality with respect to settling time is not unexpected since the controller, which learns

via reinforcements, is only given one goal: Drive the power system to its set point _ = [0, 0]. The only

reinforcements that are given are upon success or failure of the plant and a desired trajectory through

the state space is not defined. These external reinforcements are used to update an internal prediction

function for each maximally activated node nt at time t via Pt+l(nt) = Pt(nt) + _(Pe(nt+l) - Pt(nt)),

similar to Sutton's method of temporal differences. Thus, only by trial and error does the controller learn

to drive the system to the set point, and it does so without requiring (and therefore without necessarily

satisfying) a performance objective function.

The two controllers that performed better [35, 34] both utilized external information about the plant

or the behavior of the controller. This additional information about the plant dynamics and desired

control behavior could possibly be used by our controller to develop near-optimal control automatically.

For example, knowing the desired trajectory of the power system through the state space allows the

controller to give itself additional external reinforcement about its behavior, thereby changing Pt (nt) and

the learned control law.

2.7 Unique Features

This controller has several unique features mentioned earlier which we recapitulate here. It is adaptive

and well suited to the control of complex processes. In particular, it is capable of learning effective
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controlusingprocessdataandimprovingitscontrolthroughon-lineadaption.Thecontrollerperformsa

fuzzydiscretizationof thestateandcontrolspacesandlearnsthefuzzyrelationsforthesefuzzysubsets
usinga variationof theTD methodwith its dynamicprogramminginspirations.Whileit adaptsboth

themembershipfunctionsandthecontrolrulestate-controlassociation,thecontrollerprimarilylearns

thecontrolruleassociations,unlikemanyothermethodswhichfix therulesandadjustthemembership
functions.Mostimportant,it doessofortheentirestatespace.Additionally,notrainingdatasetsnor

anyerrorsignalderivedfromknowledgeof thedesiredplanttrajectoryareneeded.Thisself-learning
controllerhasbeensuccessfullyappliedto theinvertedpendulumproblem,theDCservomotorposition

controlproblem,theswitchingprobleminadistributedcommunicationsnetwork,andthepowersystem
stabilizationproblem.

2.8 Conclusions

We have reported the development an intelligent controller with many unique features and successfully

applied it, with various modifications, to an array of problems. Of note are: Esogbue and MurreLl, 1993a;

Esogbue and Murrell, 1993b; Murreil, 1994; Esogbue and Murrell, 1994; Esogbue and Hearnes, 1995;

Esogbue, Hearnes and Song, 1995). Further investigations and extensions which are outside the scope of

this project are underway. These incluc_e the use of more intelligent reinforcement strategies especially

those that are DP-based algorithms useful in learning real-time control strategies. Of interest are Watkin's

Q-learning algorithm and its variations and hybridization of the controller involving dynamic switching

between the reinforcement controller and a stabilizing controller.
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Chapter 3

The SFAL-C Controller: Theory and

Development

3.1 Theoretical Results

We have reported, in the previous chapters, the essential underlying structure of the controller, as well

as experiments which illustrate its performance in sample problem arenas. These led to the elicitation

of its properties enunciated earlier. In this chapter, we present a detailed account of its theoretical

aspects and properties. To do so, we reproduce the relevant sections of J. A. Murrell's doctoral thesis

supervised by the author of this report and PI of the project under sponsorship by both the National

Science Foundation(NSF) and the Electric Power Research Institute (EPRI). As indicated earlier, J. A.

Murrell's work on the project led to his doctoral thesis in question. Specifically, Sections 5.4 and 5.5

are involved. Without loss of generality, throughout this chapter, the references to the equations as for

example Eqs. (5.14-5.21)are exactly the same as the relevant portions of the thesis.

3.1.1 The SFDN Algorithm

The purpose of this section is to show that the distribution of the node location vectors is adapted to

reflect the distribution of information in the state space. In terms of the spatial distribution of the states,

information is concentrated where the spatial variance is small; that is, in the empirical distribution which

counts where states have occurred, there is more information at locations in the state space where many

states have occurred and thus the average distance between them is small. This is the kind of information

that ordinary clustering algorithms tend to maximize. Here we would like to consider a broader definition

of information. For example, in some areas of the state space, the certainty that a particular control

action is correct may be greater than in other areas. The greater certainty may be due to a lesser degree
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of inherentfuzziness,or lessstatisticalnoise,or both.Moreover,foracertainregionofthestatespace,
certaincontrolsarebetterto usethanothers.Thistypeofinformationshouldalsoimpactonhowstates
aregrouped.

Assumewithoutlossof generalitythat thestatespaceX is continuous. A continuous distribution

can be given as the local density defined over the domain. Characterize the continuous distribution of

information by a density I(v) at location v in state space X. The distribution of nodes D({N_}) is a

discrete distribution. A discrete distribution can be characterized by the frequency of occurrence within

determined subregions which partition the domain. We would like to be able to describe the closeness of

a discrete distribution to a continuous one. In order for the distributions to be close, (1) the frequency

of points within each region should be proportional in some sense to the average density in the region,

and (2) the discrete points within each region should be near concentrations of density in the region.

Both should be satisfied. With only the first criterion, points within a region could be distributed in any

fashion even though the frequencies match the densities for each region. _If only the second criterion were

satisfied, then one region could use all the available points to distribute according to the local density,

leaving none to cover the densities in other regions.

An objective function whose minimization balances the distribution of the node locations m, among

the regions with nearness within each region is given as

min V = _i -_¢ " f (v - rn')_I(v)dvrh¢ (3.1)

where

l(v) = the information density at v

r/i, = the i'th region of points in X.

r/i¢ = {vlv•r/¢ andrn, E77¢}

The information density I(v) used in the controller is a function also of m_,g,,v, and Pl, as well as of

the iteration, since it is actually an estimate which is updated by the algorithm over time. Eq. (5.15)

gives the nearness between node N_ and node N_. as

v,. (k, g,) = v,. (k) • a(g,., g_) • I(g,.)

This quantity can be viewed as a kind of information potential between the two nodes. The degree of

membership of N, in the node neighborhood of N,. is based on this nearness, but cuts off for nodes

beyond a crisp radius:

{ v,.(k,g_) if _.(m_,v) < p_(k)Izl. (m, (k), gi (k), v(k), Pt (k)) = 0 otherwise
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istheinformationavailableto nodeN, from node N,.. Hence, the total information available to N, could

be constructed as a weighted average that interpolates the information learned at each of the nodes:

S

I(v,m,, gi,PI) = _ wi(v)•., (rni,g_,v, Pl))

S

I(v,m,,g,,pl) = Z w,(v) . l_i(m,,g,, v, pz))
i=1

where, for example, s,(v) could be #x,(v) and _ and • indicate any appropriate disjunction and con-

junction operators. If we let wi(v) be an indicator function for the index of the node in which v has the

largest membership, so that

I(v, rni, gi, Pl) = #i. (rni, g,, v, Pt) (3.2)

then the resulting definition for I(v) is sufficient; in practice, the crisp, cut-off limits the distance over

which information from other nodes affects node Ni. In this definition, the information density is actually

piecewise constant with respect to v, other arguments fixed.

For the theorems which follow, the following are needed. Let

/k_rn, = rn_(k + 1) - rn_(k).

v(k) be distributed as a uniformdistribution F_ "over X

h(v) = h = 1/ f dv = probability density function of v(k)
X

i* = i(v) = i such that/_x,. (v) >/_x, (v)¥i # i*

{ 1 if di-(mi,v)_<p,(k) }6(d_.(rni,v) < pt(k)) = 0 otherwise

r/_(k,/, i*) = {rid,. (rni, v) _< pl(k)} = crisp neighborhood of states about node Ni.

f dv
A(k,i,i') =

E.{•} represent expectation operator with respect to distribution of v(k)

The first theorem says that nodes of the SFDN map tend to move towards concentration of informa-

tion.

Theorem 1 Using the SFDN algorithm of Eqs. (5.14-5.21), the expected change in node location param-

eter vector at a given step k is weighted according to the average magnitude and location of information

density.
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Proof

According to the SFDN algorithm Eq.

Ev{&kmi}

(5.14),

= mi(k) + a(k)#i'(mi,gi,v, pl)(v(k) - mi(k))

= Ev{a(k)tti.(mi,g,,v,pt)(v(k) - mi(k))}

= a(k)Ev{#i.(mi,gi,v, pl)(v(k) - mi(k))}

f/_i(v)(mi, gi, v, pl)(v(k) - mi(k) )dFv(v)
= c_(k) v E X

Let D(Ni) be the direction of the information for node Ni due to v. Then the direction is

D(Ni) = v-m,
IIv - mill _ v - mi

The information density at node Ni is I(v, mi, gi, pt) = #i- (mi, gi, v, pt). Therefore, since a(k) > O,

E{/X_,m,} _x f t(v,m_,g,,m)D(NOdFv¢v) (3.3)
vEX

and the theorem is proved.

Q.E.D.

Lemma 1

Using the SFDN of Eqs. (5.14-5.21), the following equation holds:

Slt=l

Ev{/\kmi} = c,(k) Z vi. (k, mi,g,)hA(k, i, i*)[m,,(k) - mi(k)]

Proof

(3.4)

Ahm_ = mi(k) + a(k)p,. (m,,g,, v, pt)(v(k) - m,(k))

Ev{/_hrn_} = E{a(k)p,.(mi,g_, v, pl)(v(k) - m,(k))}

= a(k)E{_i.(mi,g,,v,pt)(v(k) - rr_(k))}

a(k) f _i(v)(mi,gi,v, pl)v(k) - mi(k))dFv(v)
vEX

$

i'----I

f v,. (k, g,)(v(k) - m, (k))dfv (.)
v E rll(k,i,i')
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s f(v(k) - m,(k))dFv(v)
= _(k) _ v.(k,g,) _ _ ._(k,i,i')

V=I

S [ f v(k)dFv (v)= _(kl_,,(k,a,) .v(k,i,i')
i'=!

s [ fv(k)dFv(v)
= _(k)_vi'(k,g,) ,v(k,i,i')

,'=_ fly(k, i, i')
S

= a(k) Z vi,(k,g,)hA(k,i, i')[mi,(k) - mi(k)]
i'=l

- f mi(k)dFv(v) ]
,v (k, i, i') J

- m,(k) f dF_,(_,)

Q.E.D.

Comment

Note that hA(k,i, i*) < 1, and that it tends to decrease with k, since pl(k) decreases with k, though its

actual value depends on the values of ai,ai., and ai_. Also, if r/v(k,i,i *) is empty, that is, if mi is not

in the neighborhood of mi. for any choice of v, then A(k, i, i*) = O.

Comment Note that if M = vi.(k, gi) were a constant M with respect to i*, and if the distribution

of nodes around Ni were fairly uniform, then the average change in location would be close to zero:

a(k)Mees[mt,(k) - m,(k)] _ 0

Hence, the distribution of information among the nodes N,. surrounding Ni, indicated by the vi. (k, g,)

values, weights the average direction to surrounding nodes. The expected change in the location param-

eter of node Ni is weighted in the direction of the node concentration of information vi.(k, gl) in the

distribution of nodes Ni. around node Ni.

The next theorem says that the node distribution D{Ni} tends towards the information distribution

I( v, rn,, gi, pl).

Theorem 2 The expected one-step change in a node location parameter for one step is along the negative

gradient of the objective function V:

dV

Ev { Aj, rni } cx - --a_m-- (3.5)

Proof

Taking the derivative of Eq. (5.44), we obtain

dV f(v - mi)I(v)dv
,,,,

i'

Define the crisp neighborhood of states about each node N,.as r/i. = rl(i,i*,k).

maximally activated node is selected,

Since exactly one
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{o(i,i',k)[i' = 1,...,s} is a set of mutually exclusive and exhaustive subsets of X to serve as the

distribution bins.

Since I(v, rn_, gi, p_) = #_. (rn_, gi, v, Pl) is a function of mi, the complete derivative of Vrequires the

I be differentiated. It is not a continuous function of rni, but rni is only used to determine the size of the

neighborhood. When rni changes at step k as a result of the update algorithm, the change in the size of

the neighborhood does not affect I(v, rn,, gi, Pl) until the next iteration of the algorithm at k + 1. Since

the result to be established pertains only to what happens at step k, the rate of change of I(v, mi, g,, p_)

with respect to rn, does not enter into the computation of the derivative of V. Thus we have

dV s

dmi -2 _ f(v - m,)I(v, mi,gi,pl)dv= ,h,(i, i', k)
i'-=l

S

= -2 E f(v - rn,)#,,(m,,g,,v, pi))dv_v (i, i', k)
i'=1

S

= -2
,,=_ _(i,i', k)

S

- 2 g,) -
r/v(i, i', k)

i'=1

= -2Ev_(k'g') rIv(k,i,i') r/v (k, i, i')
i'=l

= -2Evi,(k, gi) r_v (k, i, i, ) rlv(k,i,i')
it=l

S

= -2 vi'(k,g,)A(k,i, i')[m,, - m,l
i'=l

S

oc -a (k) E ve(k,gi)hA(k,i,i')[rnv -- rn,]

This theorem says that the expected one step change in every node location is in the direction of mini-

mizing V, which means that the distribution of nodes is brought closer to the distribution of information.

The location parameter update algorithm is thus a (stochastic) steepest descent, i.e., gradient algorithm

on the objective of closeness of the distributions, algorithm asymptotically approaches minimizing V,

which would indicate the node distribution were as close as possible to the information distribution. It

has only been shown that the expected tendency is towards minimizing V.

It is clear that if a function I(v) were available independent of the node locations rni, then V could

be optimized when

f(v - mi)I(v)dv = 0
_ rh, i

i'

which would occur if every rni were positioned right at the centroid of v in each region. In our replacement

of I(v) by the estimate I(v, rni, giP_), the minimization would occur when every rr_ within a region equals
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the rni. of the region. This would mean that either each rni is the only node in its region or every other

node in each region has collapsed into rn.. This latter is not desirable, yet it is almost sure to eventually

occur to any node which is within the crisp neighborhood boundary of only one other node for all values

of v. Nodes with locations rni which belong to the crisp neighborhoods fly (_, i', k) of several other nodes

N_, for some value of v still feel the pull of each of those nodes and so, on the average, do not collapse

into another node.

The SFDN algorithm is a self-organizing algorithm; the sense that we mean that here is that it

attempts to organize the location vectors according to a function of the location vectors themselves, i.e.,

it is self-referencing. It tries to "bootstrap" itself into a meaningful order with no teacher assistance.

The inherent danger in such an algorithm manifests itself here in the possibility of nodes collapsing into

each other, thus destroying its own information-carrying capacity. To some extent, this may be alright,

if the process is begun with more nodes than are really necessary. However, if the algorithm were left to

run indefinitely, as we would like to do at least conceptually to prove a'fi asymptotic convergence result,

reaching an absolute minimum of V might be an undesirable result.

The heuristic which avoids this is to decrease the size of the crisp neighborhoods in time at the right

speed. If the size is decreased too quickly, then the nodes have too little time to distribute themselves

according to I and perhaps too little time for an accurate estimate of I (which depends on other algorithms

in the controller, as well as on "the plant) to develop in the first place. If the rate of decrease is too slow,

then there may be too little net movement of nodes, on the average, since a node may belong to too

many neighborhoods for too long; or, if the initial neighborhoods are very small, too much time may be

spent in the situation where nodes belong to only one other node's crisp neighborhood, and too much

collapsing then occurs.

The rate of decay of the neighborhoods also must be balanced with the size and rate of decay of

the rate parameter a(k), which is the step size of the increment to each rni. The increment to rnl also

cannot be so large that the information function I(v, rn,, gi, Pl) itself shifts too rapidly to be followed

by subsequent location updates. The dilemma here is similar to that found in the analysis of Kohonen

self-organizing feature maps, for which few analytical results have been proven. Also as with SOS, there

are edge effects, which manifests here in the situation of nodes near the edge of the proscribed state space

which are not surrounded by other nodes on all sides. Whenever there is not a fairly even distribution of

other nodes around a given node, the efficacy of the algorithm suffers.

Ideally, we would like for the process to develop as follows. First, build up a good estimate of the

information I(v, mi,gi,p_) ; then, give the nodes sufficient time in each others' large neighborhoods

(using each other as estimates of centers of density) with large step sizes for the node to make the gross

movements to arrange themselves according to the global pattern of the density; then spend time with

neighborhoods small enough to include only a very few close neighbors and have a small step size in
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orderto adjusteachnode'spositionwithin in its ownneighborhoodto moveit towardsthecentroid;

thenfinallycometo thepointwhereeachnodeis theonlynodein its neighborhood.At present,no

resultsareknownregardingthebalanceofa(k)andpl(k) which guarantee that this is achieved. As with

SOMs, these working values for these quantities have been found through extensive simulation, since

precise theoretical specification is lacking (see [75], [131], [132], [133], [27] for discussion of the analogous

situation for SOMs).

Several very important things are accomplished when the algorithm does work, however. The esti-

mated density I(v, m_, gi, Pl) can be defined to reflect not only the distribution of the states, but the

distribution in the state space of information about the correctness of controls. Hence, nodes tend to

move to areas in the state space where knowledge about the correctness of the control for that locality is

most certain. Therefore, nodes tend to move away from areas in the state space where the correct control

is ambiguous, i.e., the control switching curve where the transition from one discrete control to another

should take place. The information can also include how closely matchgd the controls of two nodes are.

Hence, nodes with similar tendency to choose a certain control gravitate together more than nodes with

unlike control choice tendencies, so that the nodes tend to cluster according to their associated control

value as well as according to the distribution of the states. The SFDN algorithm of the SFAL controller

tends to cluster nodes together that have a similar control in a manner that reflects the distribution of

appropriate controls assigned to states in the state'space.

The idea of the spreads algorithm is similar to that of the location update algorithm. It is a gradient

algorithm that brings the error between s_ and IIv - rn_ll 2 towards zero, but the errors are weighted to

count more when v is close to vn_ and when node N_ has not been frequently visited. The former weight

is equivalent to computing the average error only over a local fuzzy set centered at rn_ with spread equal

to the fuzziness parameter ¢. the latter weighting makes the spreads tend to be larger for nodes that have

not been frequently visited. A node that has not been frequently visited has less information and so this

uncertainty is reflected as a larger dispersion in the membership function there. A proof for the gradient

descent property of the spreads algorithm could proceed along the lines of Lemma 1 and Theorem 2, but

it would be more difficult due to the necessity to take expectations of a more complicated, non-separable

functionof the random variablesv.

3.1.2 The SLFCN and IFCN Algorithms

In this section, it is shown that the correlation parameters reflect the distribution of reinforcements among

the control actions, and that the c_j and hence the g_j estimate the fuzzy control relation which is correct

according to the reinforcements.

In the last section, we were concerned with a distribution which is a continuous-valued function over

a continuous space of points, and a distribution which is a discrete-valued frequency count for intervals
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or regionsina continuousspaceofa finitenumberof points drawn from that continuous space. In this

section, we are concerned with continuous-valued functions over a discrete space of points. Each point ....

in the discrete space corresponds to one of the r different fuzzy control actions. Hence, to describe a

distribution, there is no need to arbitrarily construct intervals or regions in a continuous space. The

following definitions make precise what is meant by the term distribution as it is used in this section. Let

= {1, 2 ..... r} be the index set for an ordered set of objects UF = {U1 .... , Ur}.

Def. 1: A set F = {f, E (0, 1] I i E G} is called a distribution over UF.

Def. 2: A vector f = If1,-.., fr] T corresponding to the distribution F is called a distribution vec-

tor.

We may sometimes write F{f} to indicate the distribution correspondihg to distribution vector f.

Def. 3: A distribution is called a probability distribution if _ fi = 1.
i=l

Recall that zii is the fuzzy reinforcement that should result when the state is classified as Xi and the

control action taken is classified as Uj(Z = [zij] wsa defined in Eq. (5.8)). Then zi = [zil, z,2,..., zi,] T

is the fuzzy reinforcement vector for action i, and Z = [zo] is the fuzzy reinforcement matrix. For a

deterministic plant, z, is a fixed, not random quantity. For stochastic plants where the reinforcement for

a fixed state and action is random, then we would like zij to represent the expected value with respect

to any random components of the process, assuming that the distribution is stationary. If the process

under consideration is time-varying so that the reinforcement distribution is not stationary, then, as with

all adaptive control situations, it would be necessary to assume that the rate of variation were small

compared to the adaptation rates of the controller algorithms.

Let _i(k) = [_il (k), _i2(k), .... _,r (k)] r be the sample reinforcement vector received at step k for action

i. Even for deterministic plants, this vector is random due to the random nature of the controller itself.

Recall that the control action index j* is randomly selected according to the correlation parameter vector

c_(k) = [c41(k), c_2(k),..., c_r (k)] r, which gives the finite probability distribution at time k for the control

actions for an input state vector classified as Xi. We have

_,(k) = ['51(k)bl_(k),...,'5_(k)brr(k)l T = [0, 0..... _i (k)bj. r(k) .... ,0] T

[0, 0..... z,_., .... 0]r

All of the components of (i(k) are zero except for the j,th component, where j* is the index of the

control action taken at step k. Thus, (:iio (k) is the reinforcement r(k) (weighted according to ai, the

degree of membership of the state x(k) in Xi) actually received by the controller at step k when the state
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isclassifiedasX, and the control action taken is classified as Uj. In practice, the quantity r(k) has a

random component due to the fact that it is a statistical estimate or prediction provided by the PES

using past data.

The uncertainty in the reinforcement is not fundamentally random, but rather it is fuzzy. First,

we allow that the correctness of an action as indicated by the reinforcement r(k) may be a matter

of degree, even given crisp x and u. The correctness of an action (as indicated by the reinforcement

zi3 (t) = ai (x(t))bj (u(t))r(t)) within each fuzzy neighborhood Xi is further fuzzified, since the performance

resulting from applying any single control action varies over the states in Xz. The fuzzy neighborhoods

of the SFDN map induce a fuzziness on the reinforcement vectors z,. The randomness of the sample

reinforcement vectors (i is due to any randomness in the plant affecting the determination of which fuzzy

cell the state most belongs to, due to the controller's random selection of a control to be evaluated, and

due to accumulation of randomness from these two causes which builds up in the statistical estimates of

r(k).

Since the reinforcement is inherently fuzzy, the correlation parameter vector which gives the action

probabilities cannot be expected to converge to a unit vector, as is the case with crisp environments

usually considered with learning controllers. It is the objective of this section to show that the learning

algorithm of the proposed controller distributes the action probability distribution vector according to

the reinforcements, i.e., the measure of the correctness of the controls.

We are interested in the distribution of the net reinforcement over the set of discrete control actions.

Since reinforcement lie in the interval (-1,1], the vector zi does not fit our definition of a distribution. Let

T(zi) = [T(Zil),... ,T((zir) T where T : (-1, 1] --* (0, 1] is transformation that takes any reinforcement

into the unit interval. For example, Tl(z) = (z + 1)/2. Then T(z,) is a distribution vector with corre-

sponding distribution. It can be considered the membership distribution over fuzzy controls Uj giving

the degree of membership for each control in the set of correct controls b/, given the fuzzy state Xi.

The (empirical) distribution Z_{T(_i(k))} is the distribution of vectors T(G(k)) through time k.

Since each random vector T(_(k)) is a random sample of the true value of the distribution vector

T(zi), an estimator of the expected value is needed. Let fi(k) = [f_l(k), fi2(k) ..... fir(k)] T be the

finite distribution vector for Z_,{T(_i(k))}. The classical estimator for this (empirical) distribution is the

simple average over the number of times kj(k) that action j is chosen when at state i after k steps:

k_

f,j(k) = E T(¢,j(rn))/kj (3.6)
rnm l

This estimator is the maximum likelihood estimator, and it is known that E{f_(k)} = z_. The estimator

is also known to be consistent, that is, fj(k) approaches the true distribution z_ as k increases [31].

A recursive formula for an estimator of this type can be found as follows. First consider the simple
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casewherek indexes the occurrence of a sample quantity x(k). Then

k+l

f(k+l) = _x(m)/(k+l)
rrt=l

- k + 1 _ _(m///k: + (k + 11
rrtml

k 1

- k + 1f(k) + g-_(k + 11
1 1

- rf(k) + ,---}-rz(k + l)
a+_ 1+_

Note that the weighting factors k/(1 + k) and 1/(1 + k) sum to 1. When these are replaced by factors a

and (1 - a) for some positive a < 1, then we have

f(k + 1) = af(k) + (1 - c_)x(k + 1)

which gives the exponential smoothing estimate, or "forgetting factor" estimate, and has the basic form

of the delta rule. A more general form of estimate can be given by replacing 1/k with a general quantity

_(k).

1 _(k) x(k.4. 1)
f(k -4-I) = I + w(k) f(k) -4-I + w(k)

For a recursive estimation'of _he empirical ciistribution of the quantities T((,(k)), account must be

taken of the fact that only one component is updated at each step k.

+ 1) = / 1+_, fie(k) + t_+_J r(¢''(k + 1)) if j = j,£:(k
t fi:(k) otherwise

Let

Then

_j(k) = Z../k,
%(k)

w:(k) =
1 +_:(k)

1 ifj =j*6jj. = 0 otherwise

f :(k .4. 1) = (1 -wj(k))[f,l(k) ..... :_r(k)]T + [wl(k)T(_il(k)) ..... w_(k)T(_,r(k))] r

= (1 - wj(k))[f_l(k),... ,f_r(k)] r -4-[0 ..... w:.(k)T(_o.(k)),... ,0] r

= (1 -wj(k))fi(k ) +wj.(k)T(_(k + 1)

64



Def.4 Givenasequence{¢'(m)E(-1, 1];rn = 1,2 ..... k} of distribution vectors, if a distribution vector

f(k) can be written in the form

f(k) = (i - wj(k))f ,(k) + wj.(k)T(((k + 1)

for some transformation T: (-1, I] --* (0, 1] and some functions wj(k), wj(k) such that

0 < wj(k)< 1,0,< w(k) < 1 and w(k) = 1 +w(k)

then f(k) is a normalized frequency count of the vectors {T(_'(m)); m = 1, 2,..., k} at time step k, and

isthusanestimateofEl_-_r(_,j(rn))/k3} =E(r(zi)}.
_ rn_l

When T and w_(k) have certain properties, the distribution estimator yields a distribution which is

similar, in some sense, to that obtained with the classical estimator, and in fact, similar to the true dis-

tribution. In the next theorem, we will show that action probability distribution given by the correlation

parameter vector c_(k) has the above form ._ad that it is expected to be close or similar to the distribution

of the reinforcements T(zi(k)), for each i. Therefore, some concept is needed for what it means for two

discrete distributions to be similar to each other when they are not necessarily the same(e.g., when one

is an estimate or approximation of the other).

Def. 5 A distribution vector c is said to be similar to a distribution vector f, written c _ f, if the

descending order ranking of the components of c equals that of f, that is

order {cj;j = 1,...,r} = (jl,j2,...,Jr) = order {fj;j = 1,...,r}

where cjl >_ cj2 >_ ... >_ cjr

and if whenever cj_ > cjb then fj, > fib and whenever fj, > fib then cj, > cjb.

Clearly, this relation of similarity is reflexive, symmetric and transitive, since it is based on the equal-

ity of their orders. It is also obvious that multiplying by a positive constant or adding a constant does

not affect the similarity of one distribution vector to another.

Def. 6 Two distributions C and F are similar if the corresponding distribution vectors are similar.

Before presenting the main theorem, a few preliminary results are established.

Lemma

If conditions (a) through (d) hold:

(a) _f E (0, 1)

65



(b) ¢ij(k) E (-1, 1),Vi at each k

(c) ci:(0) E (0, 1), Vi, j at each k

(d) _ cij (0) = 1, Vi

j=l

then, using the correlation update algorithm of Eqs. (5.22-5.32), the following hold

(i) ci:(k) E (0, 1), Vi,j at each k

(ii) _ cij(k) = 1, Vi at each k

j=l

That is, if c-i begins in the unit simplex, it always remains in the unit simplex.

Proof

Conditions (c) and (d) imply that (i) and (ii) hold at k = 0. Now, for any arbitrary k, it is shown that

the one step of the update algorithm preserves them. We have that, for all i such that c,j is updated

(that is, such that Ni is in the crisp neighborhoods of nodes about Ni. ),

cij(k + 1) = c4j(k) + 76ii(k)(,j(k + 1)
1 + 7_ o. (k)z,:.

Let

' / ci_(k) + 7cij(k)¢o(k + 1) if zj < 0cia(k) = , cij(k) + 7(1 - cij(k))(ij(k + 1) if z: >_ 0

zxc',j(k) = c',j(k) - c,j(k)

If ¢'ij(k + 1) = 0, then dij(k ) = cij(k), which by assumption satisfies (i) and (ii). If (i:(k + 1) < 0, then

7 > 0 and cij(k) > 0 =_ 7cii(k)_ij(k + 1) < 0

=_ co(k ) + 7cij(k)_'ii(k + 1) = c'ij(k ) < cij(k) < 1

Hence c_a(k ) < 1.

_ij(k + 1) e (-1, l) _ ]_,_(k + 1)1 < 1.

_, < 1 and IGj(k + 1)1 < 1

=_ c4j(k) > 17c, j(k)Gj(k + 1)1 =_ c_:(k) - 17%i(k)Gj(k + 1)1 > 0.

cij(k) -l'Tcij(k)(ii(k + 1)1 = co(k ) + "ycij(k)_ij(k + 1) = c_ij(k)

=_ cij(k) - [-_cij(k)_,j(k + 1)1 > 0
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If _i(k+ 1)> 0, then

c',3(k) > 0

co(k) E (0, 1) =_ co(k ) < 1 and co(k ) > O.

co(k ) < 1 =_ (1 - c_j(k)) > O.

(1 - co(k)) > 0 and _ > 0 and (_(k + 1) > 0 =_ 7(1 - cj(k))(,j(k + 1) > O.

c,:(k) > 0 and "/(1 - ci:(k))_i:(k + 1) > 0

ci3(k) +_(1 - cij(k))C,:(k + 1) = c'i:(k ) > 0

cij(k) + (1 - co(k)) = 1 and "r < 1 and ¢3(k + 1) < 1

=:_ ci:(k)+'_(1 -co(k))_:(k + 1) < 1 =_ c_j(k 0 < 1.

Now observe that

co(k + 1) -- { c_(k)/(1 + 7co.(k)zj.c_i(k)/(1 + _,(1 - c_j.(k))zj.

and that c_j(k) = co(k ) for j # j* and _j. (k) = cO. (k) + _/cO. (k)z_..

Therefore,

If _.._ co(k ) = 1, then
j----I

Hence

co(k + 1) = c_3(k)/(1 + &c'o.(k)).

(1 + _c_j(k))

c_j(k+ 1) =

= _-2_(k) +AcIj.(k)
j=l

r-1

= _c_(k) +_j(k)
j_-,

= _ _(k)
j=l

which satisfies (ii) and also implies (i).

7"

c:j(k) =_ Zc_j(k + 1) = 1

j=l

Proposition 1

Let
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O_:(k) = Pr ( visit control j at step k I visit state i at step k}

O_(k) = Pr (visit state i at step k}

If the correlation update algorithm of Eqs. (5.22-5.32) and the conditions of Lemma 2 hold, then if

O_(k) > Vi at each k then O0(k ) > OVi, j at each k. This says if each state i is visited infinitely often,

then each control action j associated with state i is visited infinitely often by the SLFCN algorithm.

Proof

With Oij(k) = co(k ), the result follows from Lemma 2, part (i).

Comment

The controller depends on the process being recurrent, so that every s_ate is visited infinitely often. It

may be naturally recurrent, as with the case of a stochastic recurrent Markov process, or artificially made

recurrent. For example, if the controller is applied to learning a robotic motion or machining process

motion, a series of learning trials would be conducted, with the initial state of the system for each trial

set randomly.

Proposition 2

The correlation parameter vector c(k) is a probability distribution vector for all k > 1, given that c(0) is

a distribution vector.

Proof

The result follows from Lemma 2.

Proposition 3

E{f(k)} given by Eq. (5.49) is similar to Tl(z).

Proof E( f_ (k) } = T1 (z), and therefore the distribution vectors are similar.

Lemma 3

Suppose we have a set X = {x[x E (0, 1)}, an arbitrary function a : X x X -* (-1, 1], and random

variables Xl, X2 E X with means zl and z2 and distributions F1 and F2 which differ only in their mean

value (i.e., the distributions have the same shape).
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If zl > z2 and a(z,x) is an increasing function in zVx E X, then

E{a(z,, } > E{a(z2,x )x2}.

Proo________f

For each i = 1,2, the expected value is simply a sum (integral)

E{a(zi, X_)X_ } = f a(z,, x)xdF, (x).
X

For each x,a(zl,x) > a(z2,x), since z, > z2, and a(z,x) is an increasing function in z. Since the

distributions have the same shape, their shifted probability density functions are equal. Therefore, we

have on the left side a weighted sum with the same weights as the right side, but in which each summand

is larger than the corresponding summand on the right. Hence

f a(zl,x)xdF_(x) > f a(z2, x)xdF2(x)
X X , and the result follows.

A condition for the next theorem is that the probability distribution for any component of the dis-

tribution ci is the same as any other, except for their means. The SLFCN algorithm selects each y"

at random according to cl. If c_ were always uniform, it is easy to see that each component would be

sampled in the same way, and thus would have the same sampling distribution. In actuality, the control

corresponding to a larger component would be selected more often, which one might think would result

in a smaller variance. However, the larger the component, the greater are the algorithm increments away

from the mean (recall the 6 factor). Therefore, the assumption is not unreasonable. In any case, the

more concentrated the distribution (i.e., the closer the density approaches a spike at the mean value), the

closer to true is the conclusion of Lemma 3, regardless of whether the distribution shapes are the same

or not. All of the sampling distributions become more concentrated as the sample size k increases.

Theorem 3 Let e be the correlation vector computed by SLFCN algorithm of Eqs. (5.22-5.35), and z

be the (fixed) reinforcement vector, respectively for any arbitrary index i. Assume that the distribution

of a component ej differs from any other component's distribution only in it mean value. Then, the

distribution E{e(k)} /s similar to the distribution T_(z) at each step k.

Proot[

Let

= f cj(k) if zj < 0
63(k) [ 1 - cj(k) if zj > 0

Then, the correlation parameter update given in Eq. (5.26) can be re-written as
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_j(k + 1)

c(k + 1)

1 + -_(f:.(k)zj.

= +
1 + ,_:. (k)zj. 1 + ,_j. (k)zj.

= 1 +75j.(k)za.' .... 1 ÷ 7-_:.(-k)z,. J

[___!k)_(k_+ 3) _r(k)_(k ÷ X)I_+ L1 + _,b. (k)zjo ' .... 1 + ._:. (k)z:o
.$

1 + .y,_j.(k)za.'"" 1 + .y,_j.(k)zj. ]

[ ._j.(k)zj. IT+ 0.... ' 1 + -y_:.(k)zj.' .... 0

1 [_l(k),.. _(k)] r
1 + ._6a. (k)z a.

-_ -y_:.(k)zj. [0.... ,1,...,01 r
1 + ,,/6a. (k)zj.

1 OVjo(k) [,.
- 1 +wa.(k) [el(k) ..... cr(k)]T+ 1 +wa.(k) Lu'''''l'''''O]r

= (1 - wj.(k))[cl(k) .... ,c,(k)] r +wj.(k)[0,..., 1,...,01T

Finally,

c(k + 1) = (1 - wi.(k))e(k ) + wa.(k)T(_(k + 1))

where

wj(k) = 1 + wi(k ) = 1 +,./_a(k)za

T(((k) ) = ((k)/(j. (k)

Thus, c(k) is a normalized frequency count of, and hence an estimator of T(_(k)).

Next, the expected value is computed. The random variables are j* = j°(k) and c(k). The expectation

is the total expectation over both c(k) and j°. Note, however, that the stochastic event at step k + 1 which

is used to choose j° is independent of all previous events used to determine the value of c(k) through step

k, therefore, e(k) and j°(k + 1) as random variables are independent (even though the value of c(k) is

the distribution vector used to help choose j°). Thus, the expectation operators Ec and Ea- of the two

can be separated. Since the j*(k) °' entry of the vector _(k) is nonzero with probability Cao(k), then the

expectation with respect to the action probabilities is simply z i weighted by ca(k ) for each component j.

Hence, we have

E{c(k + 1)} = E {(1 - w,.(k))[c_(k),..., c,(k)l r + wa.(k)[0..... 1,... ,0]r }

= Ec {E{(1 - wa.(k))[c_(k)..... c,(k)]r + w:.(k)[0 ..... _,... ,0]Tic(k)}}
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= Ec cj(k)(1 - wj(k))[c_(k)..... _(k)l r

Thus

where

+Ec {[w_(k)c_(k),..., _ (k)c_(k)]r }

E{c(k + 1)} = Ec{(1 - _(k))[c,(k) ..... c,(k)] T }

+Ec{[wl(k)cl(k),..., wr (k)c_(k)] T}

_(k) = Zr {_:(k)}

1 - _(k) = E,. {1 - _(k/} = E_. 1 + _j(k/zj 1 + _j(k)zj

The rest of the proof proceeds by induction, using Eq. (5.50).

(3.7)

Base Step Claim: At k = 1, E{c(1)} is similar to Tl(z).

Proof

In'itiaUy, c(0) is fixed at a uniform clistribution, so E{c(0)} = c(0) = [_,.. t T• , 7] • Thus, from Eq.

we have

E{_(1)} = !r(l__(0)) ,..., + [_,(0) ..... wr(0)]r

Let (i) be the indices according to the descending order of z. Then test the relations:

(5.5o)

? ?
• °

E{c(,_x)} > E(c(,)} > E{c(,+l)}

Let K = !(1 - _(0))l, which is constant with respect to the control action index (i). Then we have

1 ? 1 ? 1
K + -w(_-l)r>' K + rW(0 >" K + -w(_-l)r

Subtract K from each part of the inequality and expand each w, to obtain

1 7ti0-1)z(i-1 ) ) ? 1 ?_(0z(o ) ? 1 7_0+l)z(,+l)
r 1 +7_(i_1)z(,_1) > r 1 +7_(i)z(o > r 1 +7_(i+l)Z(i+l)

Observe that _i = _ when zj < 0 and 6j = 1 - _ when z _> 0. It is easy to verify that the function

ifz<0

ifz>O
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is an increasing function of z on the interval (-1,0], for fixed 7 and r. Hence, since z(_-i) > z(9_) > :(_+l),

it is clear that the relations are true. Therefore E{c(1)} is similar to Tl(z). --,.

Induction step:

If E{c(k)} is similar to z at an arbitrary step k, then E{c(k + 1)} is similar to z at step k + 1.

Proof

We have

E{c(k + 1)} = Ec(1 -_(k))[ct(k) .... ,c,-(k)] T} + Ec{[wl(k)cl(k),..., Wr(k)Cr(k)] T }

Let (i) be the indices according to the descending order of z. Then test the relations:

?

Ec{(1 - _(k))c(i-1} + Ec{w(i-1)(k)c(_-l)(k)} > Ec{(1 - _(k))c(,)}Ec{w(,)(k)c(i)(k)}

?

> Ec{(1 - _(k))c(i+l)} + Ec{w(i+l)(k)c(i+l)(k)} (3.8)

Consider the first term in each part. The quantity (1 -_(k)) is not a function of the index and multiplies

every cj, and so does not affect the ordering (invoking Lemma 3). Since by assumption we know that

E{c(k)} has the same ordering as z, then we have that

Ec{(1 -_(k))c(,_l)} > Ec{(1 -_(k))c(,)} > Ec{(1 -_(k))c(,+l)} (3.9)

Next we examine the second term in each part of the inequality relations. Consider the function

_ ifz<0

l + _,cz

W(CZ)= _(1-c)z
l+_(1-c)z if z _>0

Since this is an increasing function of z on (-1,1] for every fixed c, then by Lemma 3,

Ec{w(,-D(k)c(_-l)(k) } > Ec{w_)(k)c(x)(k)} > Ec{w(,+D(k)c(l+,)(k)} (3.10)

Summing the inequalities in (5.52) and (5.53), we see that the relations in (5.51) hold and the induction

step is proved. Thus, the theorem is proved.

Q.E.D.

Comment

The result of this theorem is essentially equivalent to showing that the learning algorithm is expedi-

ent (see[107]).
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Comment

In practice, statistical estimates of the zij provided by the PES are used, and so are subject to addi-

tional random uncertainty, and inaccuracy early in the learning procedure. Also, since it is the expected

value of c(k) which is considered, there is always the possibility in practice of "unfortunate" sample paths.

Comment

No theoretical restriction on -_ has been established, other than 0 < 7 < 1. In practice, values as

large as 0.75 have been used with no ill-effects on the performance of this particular algorithm. However,

the speed with which this algorithm learns impacts on the other algorithms of the controller, namely,

the location parameter update and the performance estimates. A balance must be achieved with the

parameters of those algorithms.

We have shown that E{c_} is similar to z_ for any i, which means that the matrix E{C} is similar to

Z, by which we mean that the row vectors are similar. The SLFCN node for each i does not just learn

individually, but shares what it has learned with its neighbors.

Def. 7 Node N, is said to learn at step k if IA c,j(k)l > 0 for any j, and is said to have learned

(to some degree) by the time step K if I A c_j(k)l > 0 for any k < K, for any j.

Def. 8 The neighbors of a node N,. are all Ni such that N, E _%(k,i*).

Def. 9 A node N_. is said to share its learning at time step k if 7?c(k,i*) _ Q and for all N_ E rk(k,i*)

and all j, the following hold:

i) IA > o

ii) I A c_.j(k) - Aci_(k)l < _ for some small es.t.O < e << 1.

Proposition 4

At each step k of the SLFCN algorithm for which r/_(k,i*) _: Q and I_x,(x(k)) > 0, node N,. learns,

shares its learning, and all of its neighbors learn.

Proof

Follows immediately from the update algorithm for clj(k) and the above definitions. (It is shown later

that the condition #x,(x(k)) > 0 for all x(k) holds.)
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Nextit isshownthat theSLFCNandIFCNestimatea fuzzyrelation.First,wepresentsomemore

definitions.LetG be a fuzzy relation, which is defined as the membership function G : X x U ---, [0, 1]

such that G(x,u) = degree { state x relates to u}. The relation G represents the control law of the fuzzy

controller.

Def. 10 We say that x relates to u if u E/4 (x) = {u Ju is the correct control given state x}.

Let #u(x)(u) = degree {u E lg(w)Jx(k) = x}. Then G(x,u) = ,Uu(x)(U) is the correct control law

by some criterion used to define/4(x). We suppose that the fuzzy control law can be approximated by a

finite set of fuzzy rules of the form

if x is X_, then u is U_

which can be written compactly as Xi =_ Uj, according to the fuzzy discretization given by the referential

fuzzy sets {X1, X2,..., Xs} for state space X and {U1, U2,..., U_} for tile control space U. It is assumed

that every point in X belongs to at least one of the Xi's, and similarly for U. Hence, we approximate G

by

a= u.. (x,
23

Then (_ can be represented by a fuzzy relation matrix Go = [g_j] where

g,j = #x,(x(k)) • _uj (u(k)) • _u(x)(u) _ degree {(x(k), u(k)) • G}

and where • is a t-norm implication operator (here the t-norm type of implication is used). (_ is known

as a referential fuzzy relation [122].

Def. 11 A matrix C is a proper estimator of a matrix Z if C is an estimator of Z and E{C} _ Z.

Theorem 4 The SLFCN algorithm of Eqs.

matrix Go.

Proof

(5. 22-5.32) generates a proper estimate of the fuzzy relation

/,From the definition of reinforcement,

T(r(t)) = _u(x)(u(t)) = degree {u(t) •/4(x)Jx (t - 1) = x,u (t) = u}

that is, T(r(k)) is the degree to which control u(k) is a member of the set of correct controls given state

x(k - 1). We have

¢,(k) = [0,0..... a,(k)bj.,(k),..., Off
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E{;,(k)} = [_, ..... zr}r = [a,(k)b,y_,...,a_(k)bryr] r

Thus

ai(x(k)) = degree {x(k) E Xi} = _x,(x(k))

bj(u(k)) = degree {u(k) E U3} = #uj(u(k))

E{T(_ij(k))} = T(ai(k)bj(k)yj) = T(zij)

= #x,(z(k))._t_(u(k)),_uCx_(u)

= g,.7 _ degree {(x(k),u(k)) e G}

/,From Theorem 3, we have that cij(k) is a normalized frequency count (at step k) of zij and that

E{C(k)} _ T(Z) = T(aTy). Hence, since T(zij) = gij .'_ degree {(_e(k), u(k)) e G}, cij(k) is the nor-

malized frequency count of the fuzzy event (x(k), u(k)) E G, and so is an estimator of gij, furthermore,

E{C(k)} _- Go. Therefore, E{C(k)} is a proper estimator of relation matrix {70. Q.E.D.

Comment

The rows of C are probability distributions. Rather than use probability distributions ci for the fuzzy

membership distributions gi, any of a number of different methods for deriving a membership distribution

from a probability distribution may be used to obtain an estimator G for Go from C. In this case, we

have used a simple low pass filter given in Eq. (5.34), which emphasizes the most certain information

and discounts or discards the most uncertain.

Comment

It has not been very important here that estimates be anything more than similar (as opposed to be-

ing equal or exactly proportional) for several reasons. First, what is estimated is a normalized frequency

distribution, i.e., an empirical probability, which is typically transformed into a fuzzy distribution by

non-standard, heuristically-guided means anyway. Second, the precise scaling of the distribution is not

critical, since the defuzzification process such as COA normalizes by the total sum of the components of

the distribution the distribution-weighted sum of the controls. Whether the estimate G provides optimal

control by the definition given in Sct. 5.2.3 depends on the choice of operators. If the operators were

ordinary sum and product (linear but not fuzzy operators), then the optimal choice of G is G = Y,

which is easy to show using linear algebra and our definition of optimality (Sct. 5.2.3). For other choices,

the optimal {7 would be close to l z in some sense.

Comment
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Notethatin thelearningmode,when_ isusedin placeofaz, then

1 ifj =j*bj(u(k)) = 0 otherwise

Therefore, in the learning phase, it can easily be shown that the result of the implication a_ (k)b 3 (k)r(k)

(whose frequency count through k is measured by ci_) is the same for most common t-norm implication

operators, including min and product.

The parameters c_i can be viewed as crisp random variables which give the crisp probability measure

on the fuzzy events ((x(k), u(k)) E G}. The random variable is the reinforcement quantity r(k), which

is a crisp measure of the fuzzy event (u(t) E bl (x }. This use of crisp measures of fuzzy statistics is

addressed in [65], and [33]; see also [111].

Next, we demonstrate some of the properties of the set of rules embodied by the estimated relation

matrix G.

Def. 12 (from [123]). If I_x,(x(k)) > e for every x E X, for some ¢ E (0,1] and for some fuzzy rule

Xi =_ Uj, then the set of rules represented by (_ is said to be a complete set of rules, or to have the

completeness property. Thus, a set of rules is complete if the controller can generate a control for any

fuzzy process state.

Lemma 4

If the SFDN is implemented with gaussian membership functions, then the set of rules generated by the

SLFCN/IFCN represented as the relation matrix G is complete.

Proof

We have that

and

_x,(x(k)) = ai(x(k)) = exp(-ilx(k) - miii/si.) > 0 vi, vx E X

= ,x,(x(k)) • •,u(x)(u)

Hence, all the rules represented by the g,j in G satisfy the definition of completeness.

Comment

With asymptotically sloping functions like a gaussian, the entire input space is covered, even if the

rule base is sparse, although the coverage may not be strong. The fuzziness parameter _b can be set so

that, on the average, e is at a certain minimum level, as follows. Let d ,,_o_ = m a;x(lix_, - xlt]}. Then

l_X,(x(k)) = a_(x(k)) = exp(-lix(k ) - mili/s_)
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-dm_/s,)> exp(

exp(-d2max/si)> e :* si < ln(1/e)d2_

Since O (roughly) governs the average value of the s,'s, choose O < ln(1/e)d_x for the desired value of

g.

The usual meaning of rule consistency is that any two rules with different antecedents should not

have the same consequent. When the antecedents of fuzzy rules are associated with each fuzzy set

corresponding to each node in the state space map, the resulting rule base may not be consistent, since

it is quite reasonable for different parts of the state space to require the same control, particularly in the

case of neighboring regions. However, clustering similar terms together into one term allows the rules to

be consistent. The SFDN algorithm of the SFAL controller tends to cluster nodes together that have a

similar control in a manner that reflects the distribution of appropriate controls assigned to states in the

state space (by Theorem 2 when the information includes the factor a(gi, gi')). By associating the fuzzy

control rules with these clusters of nodes rather than simply the fuzz?; sets of states that these nodes

represent, the rule base so generated is automatically consistent. This can be seen as follows.

In general, a fuzzy set A in a discrete space XF = {x,, x2,..., xn} is defined by a discrete membership

function which is a relation on XF x [0,1] which assigns to each element in a subset S of X (called the

support of A), a real number from the interval [0,1]. For example, the fuzzy set A can be described by

the membership function {(x2,lJ.3), (x5,'0.8), (xs,0.24)}. If the original space X is continuous, then a

discretization XF of X must first be constructed, so that any element x of X can first be assigned to an

element xi in XF.

Define a collection of fuzzy subsets {2, : z = 1,... ,r} of the discrete space XF = {XI,... ,X_} as

follows. The support for 2, is

& = {X,[c,, > coVj}

Then the membership function for X, is given by the relation

{(x,,ux,(z))lx, _ &}

Hence, {2, :, = 1,..., r} is really a family of collections of subsets {2,(x) :, = 1,..., r} of the discrete

space XF parameteriaed by the state a 6 X. Alternatively, {X,(x) : z = 1,...,r} is a collection of

subsets of the continuous space X, where the membership functions are

_x, (z) if X, 6 5',#R, (z) = 0 otherwise

The corresponding fuzzy control rules are then

If z is 2,, then u is U,

What we have done is define membership functions on the fuzzy discretized space XF of the original

space X, but these are piecewise continuous rather than discrete membership functions. The support S,
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forfuzzysubsetX, corresponds to all those nodes N, of the SFDN for which the strongest association

cij is for the _th control action U,. The rules could be rephrased as

If the state is a state for which control, should be used, then use control _.

Hence, the corresponding fuzzy control rules are automatically consistent, since the fuzzy sets are defined

by whether or not X_ is most strongly associated with the _th control action U,.

Def. 13 The set of rules represented by (_ interact if whenever (Xi, Us) E G then

X_ o _ _ Uj.

By this definition, most practical sets of rules interact. What is usually given is some type of measure of

the degree of interaction (see [123, p. 112-126]); too much interaction is considered undesirable. In the

case here, a gross determination of rule interaction is given as follows: ..

if max{bj} _ max{g_.j} where br = a_(x(k))G, then the rules of G interact.
J J

For the algorithms of this proposed controller, it cannot be guaranteed that the rules do not interact,

even by this latter criterion. In the simulation experiments reported in Chapter VI and VII, it has been

observed that rule interaction is.rare except near a control switching curve. For example,, a node near

an equilibrium that is the set-point of dynamical process may favor most strongly a nonzero control

value, but the most favored control value of the fuzzy composition is near zero, as it should be near an

equilibrium set-point.

3.2 Comparisons to other Methods

3.2.1 Adaptation of Rules versus Adaptation of Membership Functions

A common approach in many "learning" or automatic fuzzy control derivation methods is as follows.

First, a fixed or variable number of possible fuzzy subsets of the state space and of the control space

are set up; then a fixed or variable number of links between state subsets and control subsets are made;

then a training algorithm is run which determines the parameters that define the fuzzy subsets. In some

approaches, the initial membership function parameters are set arbitrarily (e.g., small random values)

and an arbitrary connection is made between each state fuzzy set and some control fuzzy set; since the

initial sets are arbitrary, it does not matter which connects to which. A connection defines a rule. The

training algorithm then adjusts the membership function parameters of the state fuzzy set and/or control

fuzzy set which are paired together so that the pairing is appropriate for providing good control. Often it

is only the control sets which are adjusted, and sometimes only the location parameter, not the spreads of
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themembershipfunction(e.g.,[85]).Others,(e.g.,[64]and[88])setupall possibleconnectionsbetween

everystate-controlpairandallowtheadaptationalgorithmtoestablishtheappropriatelinks;JangI64]
allowstheconnectionstobecontinuouslyvariableweights,whileLinandLee[88]useamechanismwhich

establishesaconnectionstrengthof 1fortherulewiththemaximumweightaftersometraining,andsets

to 0 theweightsto all othercontrolsubsets.In eithercase,mostof theworkin establishingtherulesis

in thedeterminationofmembershipfunctionswithpossiblysomeconsiderationgivenaftersometraining
to modifyingtheruleassociationperse.

There is some debate about the most appropriate way to adapt a fuzzy rule base. Some authors

argue that the way to adapt a system to new or unknown environment is to keep the control rules in the

knowledge-base unchanged and modify the definitions of the membership functions instead [40, p. 402].

Whereas Altrock, et al. argue

State of the art is now to tune the membership functions, so that the behavior desired is established. This

clearly violates the concept of fuzzy control. The membership functions shall represent the engineer's linguistic

concept of physical figures to be self-explanatory. To fumble around with the membership functions for the

fine-tuning of a control strategy ... is therefore counterproductive, especially the more complex a problem

gets .... The solution is simple: If one wants to fine-tune the control strategy, one should not touch the

membership functions, but tune the rules [4, p. 836-7].

The approach taken with the SFAL controller is that of representing the rules in the form of a (fuzzy)

relation matrix, and then modifying the rules by modifying the entries in the relation matrix. In this

way, the membership functions'may be separately defined and either fixed or themselves adapted; in this

case, the state membership functions are adapted, but not those of the controls. It should be noted that

the objective here is not really fine tuning, but to establish a basic set of rules in the first place. Any

of a number of fine tuning approaches could be added on to the basic mechanism here. A significant

challenge, though, has been to find an effective way to generate a set of rules automatically in situations

where very little is known apriori about the plant.

In back propagation methods, the membership functions are adjusted according to the change in the

error function or other measure of performance [64], [88]. This is in general an advantage over methods

which use competitive self-organizing to adjust the locations of fuzzy set prototype or central members

based only on the distribution of the inputs, for reasons already discussed (autocorrelation of sequence of

states in dynamic process, spatial distribution does not contain information directly about performance).

For methods based on generating good rules by adjusting the membership functions, this is critical.

However, a gradient-type method applied to the membership functions can lead to strange and counter-

intuitive fuzzy sets, which often end up not really overlapping, in which case the fuzzy inference does no

interpolation [64], [13].

The SFAL controller adapts both the rules in the form of a relation and the membership functions.

The relation performs the weighting and balancing and interpolation among the prototype members of

the fuzzy sets, so that their actual values are important but not critical. Hence, less of the burden is
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on the adaptation of the locations and spreads of the membership functions for the state space, and

really none is needed for the control space; a uniform grid suffices. The adaptation of the membership

functions is done with a competitive self-organization process, rather than applying a gradient method

to minimize directly a performance function. Furthermore, the basis of the location updates at each step

is not simply the distribution of the states, but also includes information about what controls have been

found to be effective in each region of the state space. Thus, the membership functions are adjusted to

cover according to where performance information is available.

The way in which the relation is adapted is comparable to the identification methods used in [175],

[55], [122], and others. While the task in the SFAL controller is not identification, and the problem is

not posed in terms of fitting a fuzzy model to a set of input/output data points, some ideas are shared in

common. In [175] and [55], the relation adaptation algorithms include a forgetting factor for discounting

old associations in favor of new ones. This is essentially a delta rule approach. The proposed method

accomplishes the weighting of new versus old information differently..The parameters clj in the sector

c, are simply normalized after each increment to one of the parameters, and the increment size is scaled

according to how close the current parameter is to 0 or 1 in the direction of the change. This tends to

make information that is more certain (indicated by a parameter's closeness to 1 or 0) to be discounted

less than more ambiguous information (indicated by values near I/r). This has been found in practice

to work much better than arbitrary exponential forgetting as occurs with the delta rule..

3.2.2 Use of Generalization in Associative Reinforcement Learning Methods

The learning system should perform an approximation of the best control policy locally based on the

sample of events e(t) drawn from the probability space and then perform a generalization from that

sample by applying what it has learned to parts of the space not directly experienced but similar to

what it has seen. A crisp discrete context-based learning system, such as the one described in [101] does

not perform such a generalization. As pointed out by Narendra, the method of using a finite number of

crisp regions to partition the state space may be effective when he number of distinct context vectors is

small, but it becomes inefficient when the number is very large and impractical when the context space is

continuous [108, p. 20]. In [108], a system of SLAs is augmented by a back propagation neural network to

perform the generalization and to help address the dimensionality issue. CMAC [1] uses overlapping crisp

regions to perform a kind of generalization; radial basis function methods [23] and Franklin's method [43]

use what may be described as overlapping gaussian membership functions; however, these use a linear

recombination, which is inference with ordinary sum and product, and it has been shown that nonlinearity

is necessary to obtain universal function approximation capability [28], [77]. Jang [64] and Lin and Lee

[88] use membership functions and fuzzy inference, but their methods, like the other just mentioned,

do no employ the mathematical learning theory involving experimental hypotheses and trials. Instead,
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thesemethods,like Franklin'smethod,employgradientbackpropagation.Throughoutthiswork,we
havemadeacaseconcerningtherelativeadvantagesanddisadvantagesofbackpropagationmethodsand
learningtrial methods.

Thegeneralizationaddressedaboveisin termsoftheinferenceprocesstoobtainanoutputusingwhat

hasbeenlearned.Noneof thediscretelearningtrial methodsfoundin the literatureusegeneralization

in the incrementalupdatingalgorithmsthemselves.However,theconcepthasbeenusedin othertypes

ofadaptivealgorithms.Forexample,theapproachofadaptinganeighborhoodofcellsaroundtheactive

oneis proposedby Gardner[48]. Themaindifferencesarethat Gardener'scontrolleris completely

deterministic,usesafixedperformancemeasuretableandissetupfor PDcontrolofa onedimensional

inputstate.TheSFALcontrollerisstochasticto providegoodsamplingforestimates,doesnotrelyona
pre-determinedperformancetable,andaccommodatesmulti-dimensionalinputstates.Also,thecontrol

providedbytheSOCistunedto theinitial stateusedin thetraining,whereastheSFALcontrollerlearns

acontrollawover the state space, s

3.2.3 Comparison of Methods to Perform Fuzzy Discretization

The computational complexity of the SFAL controller, the size of the controller need not increase expo-

nentially with the size of the problem in terms of state and control dimensions. The SFAL controller

employs a vector fuzzy quantization to obtain fugzy sets in a feature or state space, hence the objects

are actually fuzzy patterns, rather than an assembly of fuzzy intervals in a multidimensional space. As

discussed earlier, this permits redundancy of information in simultaneous directions to be exploited in the

fuzzy inference process, so that the density of coverage need not be as great. As observed by Horikawa, et

al., "The characteristics of a fuzzy model depend heavily on the structures rather than the parameters of

the membership functions in the premises [60]." As discussed in Sct. 5.4.2, the actual fuzzy sets of states,

characterized by which control is used for them, is a composition of the fuzzy discretized neighborhoods

for each state reference. These neighborhoods are elliptical (from gaussian membership functions), and

the fuzzy set shapes are whatever irregular shape can be composed of these ellipses.

Other methods have been proposed which fuzzify vectors in a state space or feature space. A similar

approach is taken by Sultan and Janabi with their so-called "Clearness Transformation Fuzzy Logic

Controller" [149]. Hayashi, et al., in their work treat the inputs as a vector with membership in vector

fuzzy sets [56]. The use of fuzzy sets of vectors in the state space is also considered in Berenji and Khedar

[12] who use a gradient method on a training data set to adapt gaussian-shaped fuzzy clusters in product

space.
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3.2.4 Comparison to SOC Fuzzy Controller

The Procyk and Mamdani controller [127] needs no precise, explicit model of the process and need no

explicit derivatives with respect to controller parameters, and so shares these desirable properties with

the SFAL controller. Their method does require, however, at least a crude inverse plant model and the

specification of an index for the desired performance as a function of quantities computed from the system

state. Though the procedures of Procyk and Mamdani have worked reasonably well in various situations,

they may be difficult to apply to more complex systems and multi-input multi-output processes, as the

authors themselves have pointed out. The SFAL controller does not rely on a predetermined performance

index table which may be difficult to generate for many types of problems, such as the combinatorial-type

of control problems found in manufacturing and large operations, in contrast to ordinary position-velocity

regulator problems for which performance index tables have been developed.
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Chapter 4

The SFAL-C Controller: Extensions

and Enhancements

A number of improvements and modifications have been made to the Statistical Fuzzy Associative Learn-

ing Controller (SFAL-C) previously reported by Esogbue and Murrell and presented in the foregoing

chapters. As stated there, the SFAL-C integrates mathematical learning theory, neural networks, fuzzy

sets, and statistical modeling as a framework for intelligent control. Using the SFAL-C as a point of de-

parture, two related algorithms, the Continuous Action Space (CAS) and Generalized Continuous Space

(GCS-A) reinforcement learning controllers, have been proposed and investigated. The following com-

pares the primary components of each reinforcement learning controller and the respective advantages

and disadvantages of each approach.

4.1 Modifications to the Representation of the State Space

The Statistical Fuzzy Discretization Network (SFDN) in the SFAL-C performs a fuzzy discretization,

inducing a fuzzy partition of the state space S into S reference fuzzy subsets. This subsystem consists

of a network of automata nodes N_, i = 1, 2,..., S with corresponding prototype location vector l_ E S.

The nodes are arranged in a uniform grid throughout the m-dimensional state space S. The degree of

membership PN, of the current state vector of the process, s(k), is calculated for each of the S nodes.

An S-dimensional activation vector

_' = [_N,(S(k)) ..... DNs(S(k))] (4.1)

is a measure of the degree of similarity of the input vector to the ideal, or prototype, member of each

of the respective fuzzy sets. The CAS algorithm uses a crisp (non-fuzzy) discrete approximation to the
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statespaceS in orderto learntheoptimalcontinuousactionfor eachregion.TheGCS-Aalgorithm
utilizesa fuzzydiscretizationschemesimilarto theSFAL-C.

4.1.1 Shape and Size of Fuzzy Set Membership Functions

Two important differences between the GCS-A fuzzy partition and the SFAL-C fuzzy partition are:

1. The actual shape of the gaussian membership functions in multiple dimensions.

2. The manner in which the size, defined by a spread parameter a, is determined.

In the SFAL-C, the spread parameter a is adapted online via a fairly complex update procedure. Let

the spread parameter for N, at time step k + 1 be

o,(k + 1)= o,(k) + [lIs(k)- t,(k)ll - = 1,..., S (4.2)

where ¢i(k) is a function related to the membership degree of s(k) in Ni and the reciprocal of the

normalized frequency of state visitation at node Ni and fl(k) E (0, 1) is an adaption parameter. Generally,

the more times that a node i has been visited, the lower the value of 0i. Similarly, if the current state

of the process has a low membership value in fuzzy subset Ni, then ¢i will be also be low and very little

change in the spread parameter is allowed. The SFAL-C approach provides some distinct advantages:

1. The variation in ai creates a dynamic neighborhood function that is designed to adapt itself to the

proper size.

2. The locations of the fuzzy sets in the SFAL-C are themselves modified to reflect the inputs during

the learning phase and modification of ai can prevent unnecessary overlap of fuzzy subsets.

Empirically, the SFAL-C approach has been successful on several problems []. However, the generality

of the method, as well as the number of parameters that it requires to operate effectively, does not lend

itself well to theoretical convergence analysis. The approach taken in the GCS-A algorithm is much less

complicated but retains many of the basic features.

The fuzzy additive system used to approximate the continuous state space in the GCS-A controller is

based on the learned actions for each reference fuzzy state in S. The CAS algorithm learns this optimal

action for each Ni and provides this information to the GCS-A algorithm. Unlike the SFAL-C, the fuzzy

subsets remain at fixed locations in S in the GCS-A algorithm. This allows for the calculation of an

initial spread value ai based on some desired properties. Let the estimated policy _', be the output of

the fuzzy additive model:

E_=I _N, (s)ai: (4.3)
= ,N,(s)

Jr,-
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whereaj: is thelearnedoptimal action for N_ and

#S,(X) = exp(--ilx--I, I12/2a 2) i = 1..... S. (4.4)

An important property of the GCS-A algorithm is that it preserves the learned control law via the

discrete approximation in the CAS algorithm. Consider the state l_. By definition, #N,(/z) ---- 1. If the

CAS algorithm determines that 7r'(l,) = a*, then it is desirable property that _'_(l,) = a _ also. With

standard center-of-area defuzzification, if the value of a is chosen to be too large, it is likely that this is

not true.

4.1.2 Allocation of Resources

One of the major concerns in reinforcement learning is the curse of dimensionality. Methods that attempt

to use discrete approximations to continuous spaces must use other methods in an attempt to alleviate
o

this problem. Generalizing the state space via fuzzy subsets is one successful method. In the SFAL-C

approach, a prespecified number, S, of fuzzy subsets are spread uniformly throughout the state space. The

locations and spread parameters of these fuzzy subsets are then modified as the learning phase progresses.

The procedure is similar to that of a Kohonen self-organizing map. The intent is to concentrate the fuzzy

subsets in the regions of the state space where there is a larger number of learning trials. There is no

procedure in the SFAL-C that can add or remove nodes dynamically when and where they are needed.

This shortcoming is addressed in the GCS-A algorithm.

In the GCS-A algorithm, the locations of the fuzzy subsets N_ are fixed but the number is not.

Initially, a fairly low number of fuzzy subsets S is used. As the learning phase progresses, additional

resolution is added in certain regions where it is needed. Adding states to the CAS algorithm provides

a finer discrete approximation to the continuous state space and, therefore, improves the controller's

approximation of the continuous space. However, increasing the number of states S directly increases

the computational requirements for practical convergence of the Q-learning algorithm in each iteration

of the CAS algorithm. Beneficial regions of the state space include:

1. Regions throughout S that are highly visited.

2. Region of S near the set-point s*.

In experiments with the SFAL-C controller, the inverted pendulum problem has been successfully

controlled using as few as 4 fuzzy states and 5 discrete reference actions. However, the probability of

learning a successful control law over a large number of runs is not high when very few fuzzy states and

actions are used. As more nodes are added, the probability of learning a successful control law increases.

Generally, in the SFAL-C experiments in [57], 25 nodes are spread uniformly throughout the state space

which represent the prototype members of 25 fuzzy states. During a typical learning phase of 100,000
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timesteps,thedistributionof statesvisitedin Figure4.1showshowlittle of thetimeisspentin the

regionsfarfromthesetpointof [0,0].Figure4.2mapsthisto thecorrespondingnodesin thestatespace.
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Figure 4.1: Distribution of states visited during typical inverted pendulum learning phase.

Using the SFAL-C controller with 25 nodes spread uniformly throughout the state space, the controller

learned to successfully balance the pendulum 90% of the time in 20 experiments. The average angle that

the pendulum was balanced at was 1.3177 ° with a standard deviation of 1.7926. Allocating more nodes

around the set-point for a finer resolution in the region that is most visited reduces the average angle of

balance to 0.0955 ° with a standard deviation of 0.3801. This is a significant improvement and illustrates

the advantage of placing nodes non-uniformly in the state space. A procedure that systematically adds

nodes to regions that are visited more often and removes or merges nodes in other regions is an integral

part of the new CAS and GCS-A algorithms. Its application greatly enhances both the learning rate and

the success rate of the controllers.

We examine adding states in the region of S near the set-point s*. For the CAS algorithm, the discrete

state regions must be defined. The j-th dimension of the state space S is divided into Sj regions in the

CAS algorithm. The locations are uniformly spread throughout the region as in Figure 4.3. This allowed

the GCS-A algorithm to determine a single a value for all states since there was a uniform distance

between them. If additional nodes are added in the region surrounding the set-point, this no longer
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applies.Therefore,caremustbetakentoensurethatthevalueof a chosen in the GCS-A algorithm does

not overrepresent this region. An appropriate procedure for dealing with this scenario is being developed.

4.2 Modifications to the Representation of the Action Space

In the SFAL-C, the action space is discretized in the same manner as the fuzzy state space. Each fuzzy

state N_ is mapped to a set of A reference control actions via scalar weights c_j E (0, 1), j = l .... , ,4. The

weights determine the degree that the reference control action is the correct action to take in that fuzzy

region of the state space. Depending on the method of defuzzification used, a single weighting vector can

generate different crisp control actions to be applied to the plant.

The CAS and GCS-A algorithms represent the continuous action space as a discrete approximation.

However, unlike many approaches, the reference action set that represents this discrete approximation is

continually updated during the learning phase. This approach converge_ on a single crisp action that is

the learned optimal action a_ for that particular fuzzy state. This approach gives the distinct advantage

of allowing a coarse (low cardinality) approximation to the continuous space be refined to any e-accuracy.

This is contrasted with the approach taken by the SFAL-C, Q-learning, and other methods where the

e-accuracy predetermines the number of reference control actions A.

An additional improvement of the CAS and GCS-A algorithms over the SFAL-C is mulitple output

variable capability. The SFAL-C theoretically had this capability but, due to the complexity of the

learning algorithm and its lack of convergence properties, it was not successfully implemented in our

laboratory.

4.3 Modifications to the Learning Algorithm

Approximate methods based on dynamic programming (DP) are a fertile and ongoing area of research for

model-free intelligent control. Among the major classes of algorithms are Sutton's temporal differences

(TD) [67], Watkin's Q-learning [70, 71], and Baird's advantage updating [1]. These are online versions of

the policy improvement and successive approximation algorithms in classical dynamic programming [21].

Considering reinforcement learning can be formulated as a dynamic program, a number of reinforcement

learning controllers reported in the literature, including the SFAL-C [24, 25], have approximate DP-based

learning algorithms.

Dynamic programming methods, including many of the model-free algorithms, are generally based

on a finite action space. Continuous state or action spaces bring on the curse of dimensionality unless

some type of approximation is used. The proposed CAS and GCS-A algorithms approximate the optimal

control policy for set-point regulation problems with continuous state and action spaces. This differs

from the SFAL-C controller and others in the literature in that the CAS and GCS-A algorithms possess
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theoreticalconvergencepropertieswhiletheothersdonot. BoththeCASandGCS-Aalgorithmstake

advantageofthepropertythattheoptimalpolicyisusuallyfoundconsiderablyquickerthantheoptimal

functionalvaluesin theQ-learning algorithm. A derivative-free search algorithm determines an improved

policy during each policy improvement phase.

4.4 Experimental Application

The CAS algorithm has been applied to two set-point regulation applications of interest to this research

First, as a testbed control problem, the inverted pendulum balancing problem is examined. Second, the

power system stabilization problem, a problem of interest to the electric power industry such as EPRI,

represents an underdetermined system for which optimal control is sought. We had also used it to study

the performance and properties of our SFAL-C controller. We note that both of these problems are

multiple-input/single-output nonlinear control problems that are apprc_ximated by a fine discrete state

space.

Inverted Pendulum Balancing:

This control problem has four inputs: [0, A0, x, Ax] and one output F. The objective is to balance the

pendulum at 0 = 0 ° and keep the cart at x = 0. With the functional equation defined as in Equation

2.12 and the state space discretized into 51 x 7 x 51 x 7 states, the CAS algorithm was run.

For a standard to compare the CAS algorithm, the Q-learning algorithm was run with 101 discrete

actions to give a fine approximation to a continuous action space. This requires 12,872,349 Q-values.

After 105 full-backup iterations, the Q-learning algorithm converged to within e = 0.00001 of the optimal

functional values for each state-action pair. This required over 1,351,596,645 Q-value updates. With the

CAS algorithm, only A = 7 actions were used with a reduction factor/_ = 0.8. The CAS required 437

full-backup iterations but, with the reduced action space, it only required 389,866,491 Q-value updates.

This is a reduction of over 70% in the computational effort.

The differences in the optimal trajectories between the ideal and the CAS approximation are shown

in Figures 4.4 and 4.5. Since the strictly quasi-convex assumption may not hold, we are not guaranteed

convergence. However, a choice of a higher/_ may increase our probabiliW of finding the optimal action

but at the price of increased computational effort.

Power System Stabilization:

The power system stabilization problem has six state variables, only two of which can be measured.

Therefore the system is only partially observable. In this experiment, the control system consists of two

inputs: [w, A_] and one output u. The stabilization system is composed of a synchronous machine with
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Figure 4.4: Error in optimal trajectory of O over time for initial state [10,0].

an exciter and a stabilizer connected to an infinite bus. The dynamics of the synchronous machine (used

for simulation only) are represented by a linearized incremental model [25]. The objective is to dampen

the oscillations [_, Awl under various load changes. With the functional equation defined

V(i)=min[_2+7_-'_Pi'(a#)V(l)]"'' ,_s (4.5)

and the state space discretized into 101 x 51 states, the CAS algorithm was run.

The inverted pendulum example above was run using full backups, which required knowledge of the

state transitions. This was done for demonstration purposes. In the power system stabilization problem,

sample backups are used to learn a model-free control law. Because the system is only partially observable

with the four unobservable state variables taking on independent values, comparisons to an optimal policy

cannot be made. The number of reference control actions were A = 7 with # = 0.8 and 16 reductions of

the IoU were performed. The stabilization of the system after the completion of learning when presented

with a load change of 0.05pu is shown in Figure 4.6. The control sequence is shown in Figure 4.7.

Additional research into the sample backup approach and its effect on the number of Q-value updates,

#, and A is underway in our laboratory.

The CAS algorithm combines the derivative-free line search methods of nonlinear optimization with

online dynamic programming to create an approximate policy iteration procedure to estimate an optimal
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control law. The convergence properties of the Q-learning algorithm are used to search a continuous

action space using a discrete subset of reference actions. The reduction in computational effort over

a fine discrete approximation is evident. Example applications are shown for both full and sample

backups. Under the assumption of strict quasi-convexity, the policy is indeed improved in each successive

reduction step. If the reductions in the intervals of uncertainty are applied systematically, convergence

to the optimal control action is assured. In practical applications, where the assumption may not hold,

an adroit choice of _ and A can increase the probability of finding the optimal action.
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Chapter 5

Theoretical Foundations for

Application to Space Systems

Two important theoretical developments which contribute to an improved controller system that is suit-

able for application to complex space problem analysis involve efficient clustering methods and effective

optimization algorithms or procedures. In the sequel, we address both of them.

5.1 Efficient Clustering Algorithms

As pointed out in the Introduction chapter of this report, many studies centering on efficient information

processing and retrieval systems for space systems have been embarked by NASA at the JSC facillity.

Many of these involve the subject of clustering. Clustering is also very critical to the success of the design

of an effective neuro-fuzzy controller similar to the one that we developed in our NSF study. Therefore,

it is useful to pursue these studies as proposed in our work mission.

The importance of cluster analysis as a tool in pattern recognition is well recognized. Basically, we

may view the task in hand as that of dividing a set of K data points into N clusters in an optimal

fashion where the number N may be a preassigned integer. Clustering can be done both classically and

via fuzzy set theory. The latter generally recognizes the following two problem classes of interest: The

first one is to group fuzzy data points into some fuzzy sets. The other is to divide the crisp data points

into a specified number of subsets which need not be fuzzy but utilizing fuzzy set theoretic methods in

developing the clusters.

Our focus is on fuzzy clustering whose literature in recent years has grown increasingly vast. Perhaps,

the earliest reference to fuzzy cluster analysis may be traced to Bellman et al.[4] and Ruspini[62]. Ac-

cording to Yang[73], the studies of cluster analysis employing fuzzy set theory can be divided into three
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categories:fuzzyclusteringbasedonfuzzyrelation,fuzzyclusteringbasedonobjectivefunction,andthe

fuzzygeneralizedk-nearest neighbor rule. The first one, fuzzy clustering based on fuzzy relation, was

first proposed by Tamura et a1.[68]. They presented a multi-step procedure by using the composition of

fuzzy relations beginning with a reflexive and symmetric relation. The second and more interesting to us

is fuzzy clustering based on objective function. This approach is best illustrated via the method proposed

by Dunn[20] and generalized by Bezdek[7].

A variety of generalizations of this method has been developed. The fuzzy general k-nearest neighbor

rule, for example, is a type of nonparametric classifiers. Let a finite data point set X = {Xl, x2,-.., XK}

be given. Fhrthermore, let a set of n correctly classified samples be (xl, 81), (x2, 82),..., (x,_,8,_) where

8,'s represent the labeling variables of N clusters and tThe tethered satellite system retrieval problem

was revisited as a problem of central interest to NASA for which inadequate and inefficient control

methodologies had been used due to the complexities of the system. The literature showed that fuzzy

logic controllers can be effective for these types of problems. Our neura-fuzzy adaptive controller offers

significant advantages over both classical and fuzzy controllers for this problem.ake values in the set

{1,2,..., N}. A new pair (x, 8) is given, where only the measurement x is observable by the statistician,

and it is desired to estimate 8 by utilizing the information contained in the set of correctly classified

points. We shall call x _ E {xl,x2,..., x,_} a nearest neighbor to x if ]Ix'-x][ = minl<i<,_ ][x_ -x[[. Then

the point x is assigned to the cluster 8_ of its nearest neighbor x _. In addition, Esogbue[22] introduced

fuzzy dynamic programming to the area of optimal fuzzy clustering. Application to the evaluation of

fuzzy data generated in connection with non-point source water pollution control strategies was also

reported.

This chapter presents a concept of fuzzy prototype as opposed to crisp prototype and introduces a

new type of fuzzy clustering which we call fuzzy criterion clustering. We have proposed two forms of fuzzy

criteria for clustering analysis. The first one is fuzzy average criterion in which we maximize the weighted

sum of all degrees of membership of given data points. In the second, we maximize the minimum degree

of membership of all given data points. Different from the approaches of traditional clustering methods,

fuzzy criterion clustering preassigns the membership functions for all possible clusters to form a collection

of fuzzy prototypes and then selects a number of clusters from all fuzzy prototypes by fuzzy criterion as

the optimal fuzzy partition.

5.1.1 Fuzzy Prototypes and Fuzzy Criteria

Initially, our given data points are the samples of all possible point set X. For example, let X =

{1,5,6,30,70,72) represent 6 people by their ages. We call the set X the given data set. This can be

regarded as a sample set of all people set X with ages from 0 to 100. Thus, X C X' = [0, 100]. We

consider the given data point set X in the total point set X.
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Recallthatin traditionalclusteringprocessthegivendatapointsetisgroupedintoaspecifiednumber
of (crispor fuzzy)clustersin sucha waythat somegeneralizedvarianceisminimized.In otherwords,

afterdeterminingthegeneralizedvarianceastheobjectivefunction,theclusteringprocessproducesa
numberof clustersminimizingtheobjective.Roughlyspeaking,it will designtheposition and size for

each cluster. The term position usually means the cluster center which hopefully is not in conflict with

the the perception of the decision maker. However, the situation about size shall be changed. In fact, the

purpose of clustering is such that we can perform one policy for all the elements in one cluster or what

prototype the points in one cluster like. [f the size is too large, can we still use one policy to handle one

cluster? Clearly, we can not. It is noteworthy that the objective function of existing clustering methods

does not directly provide the decision maker any information about the cluster size.

We feel that a desirable property of a clustering algorithm which will enhance its practical utility is

its ability to provide the decision maker with some guidance in advance on the cluster size. This question

is the basic motive of our approach. Its utility in complex on line applioations is especially important.

Since we have set all given data points on the background set 9:', we will regard the cluster as a box

which includes not only some given data points but also the points on the background X. If we go back

to our given data point set, it is clear that the points in one cluster should be assigned to one class.

To illustrate, consider the example of 6 people. Suppose that according to some purpose, the decision

makers wish that the cluster size sh.ould be 3, i.e.,'in one cluster the maximum difference of ages should

not exceed 3. Thus, the collection of all possible clusters should be

U= {[x,x + 3]lO < x < 97}

which includes infinite intervals with length 3. If we want to group the set X into 4 clusters, then we can

define them as

ul = [0,3], u2 = [5,8], u3 = [28,31], u4 = [69,r21.

Thus, the given data points are all contained in the above 4 clusters.

As an extension of crisp cluster, we introduce fuzzy set theoretic concepts. We will represent the

length of interval, radius of disc, width of rectangle or a general zone by a fuzzy number. Let each

possible cluster u be a fuzzy set with membership function/_. Then/_ describes both the cluster position

and size. Furthermore, the point x*, satisfying

_(z*) > _(z), vz _ a',

is the cluster center representing the position while the size is determined by the form of the membership

function #(x). A sharp one represents small size while a plain one may represent a large size. A data

point is regarded to be closer to the cluster center if the degree of membership of this point is closer to

the best value 1. We call the possible fuzzy clusters fuzzy prototypes, and the set of elements in a fuzzy

prototype with degree of membership 1 is called a center of the fuzzy prototype.
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Supposethat wehavedeterminedsomefuzzyclusters,forexample,u_,u2,..•,UNwithmembership
functions#l, _2,'", #N,respectively.Weareinterestedin thedegreeof membershipof a datapointz.

It is more reasonable to regard x as being in ul rather than uj if #_(x) > #j(x). Thus, we define the

degree of membership of x is

v  2(x) v... v  N(X)

where the symbol V represents the binary maximum operator. That is, we take the degree of membership

at this point in the fuzzy cluster it most likely belongs to.

We note that we do not employ a distance function because it can be represented to some degree by the

membership function of our approach. Thus, our clustering criterion is to let the degrees of membership

of all given data points be as high as possible. We term such type of clustering criterion fuzzy criterion.

For this problem, the clustering criteria can take various forms. Let us however specify the following two

fuzzy criteria for our fuzzy criterion clustering algorithm as being quite reasonable.

Fuzzy Average Criterion: Here, we maximize the weighted sum of all degrees of membership of given

data points.

Fuzzy Maximin Criterion: As is implied, we maximize the minimum degree of membership of all given

data points.

It is instructive at this stage to pause and compare the concepts of fuzzy prototype and traditional

prototype, fuzzy criterion clustering and tradition&l fuzzy clustering. Clearly, fuzzy prototypes are very

different from prototypes employed in traditional fuzzy clustering, including the circular and elliptical

shapes reported by Coray[13], Dave[16], Dave and Bhaswan[18], etc.. In fact, all of the traditional

prototypes are essentially of size 0. For example, a crisp circle in a plane is of size 0 because its geometric

measure is 0, and the sum of distances from the data points to the prototypes is used as the objective

function. However, fuzzy prototypes allow nonzero size represented by a fuzzy number but abandon the

concept of distance. Additionally, fuzzy criterion employs fuzzy measures such as the above fuzzy average

criterion or fuzzy maximin criterion proposed in the foregoing to produce a predetermined number of

fuzzy clusters.

5.1.2 Fuzzy Criterion Clustering

Suppose that we have K data points, x_, k = 1,2,...,K, each xk is a m-dimensional vector, i.e.,

xk = (xkl, xk2,'", x_,,,). These data points may be crisp or fuzzy.

Let U = {ulu C R rn} be a collection of all fuzzy prototypes given by the decision maker(s). This

collection may be finite or infinite(countable or not). Each prototype u is a fuzzy subset with membership

function _ such as fuzzy interval, fuzzy disc, fuzzy circle, fuzzy parabola, fuzzy ellipse, fuzzy line, etc..

In fact, all the fuzzy prototypes in U accord with the demand of cluster size.

Let N be the predetermined positive integer representing the number of clusters.
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Ourproblemthen is to group the set of K (crisp or fuzzy) data points into N clusters selected from

the collection U. In other words, we want to choose N fuzzy prototypes from U such that they suit the

given data point set X very well based on some criterion.

Let un, n = 1, 2,..., N be a sequence of N fuzzy prototypes selected from the collection U. Since

our fuzzy average criterion for the clustering problem is to maximize the weighted sum of all degrees of

membership of given data points, we may view our problem as a fuzzy optimization problem with the

following associated mathematical programming model,

K

maxJ(u,,u2,...,UN) = _ Ak[mN_aix{/_n(x_)}] (5.1)
k----1

where un E U are fuzzy prototypes with membership functions/_n, n = 1, 2,..., N, respectively, Ak are

weighted factors, and typically, we can define Ak = 1/K. If we employ the fuzzy maximin criterion which

is to maximize the minimum degree of membership of all data points, then the following model results,

maxJ(ul,u2,...,UN) = min #n(x_) . (5.2)
k=l

Let ul,u2, • • ",UN be the optimal N fuzzy prototypes optimizing the objective function J(ul, u2,.- -, UN)

in model (5.1) or (5.2). Then {ul, u2,..., UN} is an optimal fuzzy criterion partition of the given data

point set. Each u,_ is a fuzzy cluster with membership function #n.

Remark 1: If our data points are crisp and the decision maker wants crisp clusters, i.e:, hard partition

of the given data point set, then we can define them as follows,

I

u, = {xl/_n(x ) _>#,(x),i = 1,2,... ,Y} (5.3)

for n = 1,2,..-, N. Thus, a partition of the data points into N (hard) clusters can be represented by

mutually disjoint crisp sets u_, u_,..., u_v such that all the given data points are in u_ U u_ U... U u_ if

we ignore their boundary points.

Remark 2: Let x be some given data point in X. If

=  x(x) v  2(x) v... v

is too low for our optimal fuzzy clusters, then the fuzzy criterion clustering process has to be redone

by enlarging the integer N. In fact, we can employ some interactive method to handle this process for

balancing the fuzzy criterion value and the number of clusters.

Remark 3: If the value of objective function in model (5.1) or (5.2) is too low, we also need to redo it

just as in Remark 2. Certainly, the situation of (5.2) is identical to that of Remark 2.

Remark 4: If some noise data points are included,then Remarks 2 and 3 may be ignored.
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5.1.3 Illustrative Examples

In this, section we wish to illustrate the effectiveness of the fuzzy criterion clustering based on fuzzy

prototypes sketched above by solving some sample test problems. We have coded fuzzy criterion clustering

algorithm on a workstation using C language. A genetic algorithm, a type of stochastic search method,

is employed to obtain the solution to the resultant global optimization problem. Genetic algorithms

have become popular for solving intractable large complex optimization problems. A number of good

expository references including Pal and Wang [61] discuss its application to problems arising in clustering.

Using a population size of 30 and implementing our algorithm with no more than 2000 generations in

each of the following examples, we obtained the desired results.

The general form of the fuzzy criterion clustering algorithm can be stated as follows.

Procedure Fuzzy Criterion Clustering

Input number of clusters and other parameters;

Initialize the fuzzy prototypes (chromosomes};

REPEAT

Update the fuzzy prototypes by genetic operators;

Select the fuzzy prototypes by sampling mechanism;

UNTIL(termination_condition I ..

Example 1

Using an extreme example, let us consider the data points as 1, 2,..., 100. Each possible fuzzy prototype

u given by the decision makers is a fuzzy subset with membership function # characterized by a parameter

y, i.e.,

#(x,y)=exp[ ,x_0Y,] (5.4)

where x is some data point. Meanwhile, each fuzzy prototype is a fuzzy interval. Suppose that we are

asked to group the 100 data points into 5 clusters such as that described by (5.4). Which 5 clusters are

the best choice under the fuzzy criterion? Our problem is to find 5 parameters Yn, n = 1,2,... ,5, each

y,_ represents a fuzzy cluster.

If we employ the fuzzy average criterion, according to equation (5.1), we can translate this problem

into the following mathematical programming model

1 100
max _ _'_ _(k, yl) V _(k, y2) V--. V _(k, ys) (5.5)

vl,...,vs 100 k=l

where 1/100 is the weighted factor. If on the other hand, we employ the fuzzy maximin criterion, then

the model becomes

max min p(k, yl) v#(k, y2) V...V#(k, ys). (5.6)
YI,"',Ys l<k<K
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It is reasonable to group these 100 data points into the following 5 clusters: {1, 2,--., 20}, {21, 22,..., 40}.

{41,42,.-.,60}, {61,62,..., 80} and {81, 82,.--, 100}. A run of our computer program shows that the "'_t-.

optimal objective value of (5.5) is 0.6326 with 5 parameters

(Yl,Y2,Ys,Y4,Ys) = (11,31,51,71,91),

and the optimal objective value of (5.6) is 0.3867 with 5 parameters

(Yl, y2, Ys, Y4, ys) = (10.5, 30.5, 50.5, 70.5, 90.5).

Both of the results of fuzzy criterion clustering are coincident with the above reasonable partition.

For example, we consider the second fuzzy cluster C2 = {21,22,..., 40}. We mention that, for the fuzzy

average criterion,

/*(/,31) >/z(j,31), Vi E C2,j _ C2

with equalities hold at only i = 21 and j = 41, for the fuzzy maximin criterion,

/,(i, 30.5) _>/_(j, 30.5), ¥i E C2, j ¢_C2.

If we want to group these data points into crisp as opposed to fuzzy clusters, we can use equation (5.3)

in Remark 1 to produce them which are shown to be identical to the above reasonable crisp clustering.

Thus, the fuzzy criterion clustering is successful for this example.

Example 2

This one is a variation of an example from Ruspini[63]. We take 100 points which are shown in Figure

5.1 by dots. Each possible fuzzy prototype u given by the decision maker(s) is a fuzzy subset with

membership function # characterized by a parameter vector, i.e.,

/_(x, ) = exp (-Ilx - II) (5.7)

where x is some data point and I[" [[ represents the Euclidean distance. The fuzzy prototype is clearly a

fuzzy disc.

Now we want to group these data points into 4 fuzzy clusters with membership function characterized

by (5.7). Our fuzzy average criterion based approach yields the 4 cluster centers as follows,

i = (0.73,3.42), 2 = (2.65,1.50),

s = (4.93,5.06), 4 = (6.32,2.56)

with fuzzy average value 0.785. Figure 5.1 shows that data points enclosed in one curved boundary are

grouped into one cluster.
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Figure5.1:An Example of Ruspini

Example 3

This example considers the 10 x 10 region in which 60 points are uniformly distributed on the circle

(x - 4) 2 + (y - 6) 2 = 16, 60 points on (x - 6) 2 + (y - 4) 2 = 9 and 30 noise points on the whole region.

We suppose that our fuzzy prototypes are fuzzy circles, i.e, if a center (a, b) and a radius r are given,

the fuzzy circle is characterized by membership function

#(x,y,a,b,r) = exp (-ll(x - a) 2 + (y - b) 2 - r2l[) (5.8)

in which if ix, y) is on the circle (x - a) 2 + (y - b) 2 = r 2, then # = 1.

Let the number of clusters be 2. A run of our computer program obtains two fuzzy circles which are

shown in the right column in Table 5.1 with fuzzy criterion value 0.705.

Original Circles

(z-4) _ + (y- 6) _ = 16

(x - 6)2 + (y - 4)2 = 32
Centers of Fuzzy Circles

(x - 3.978) _ + (y - 5.996) _ = 4.004 _

(x - 6.005) 2 + (y - 3.999) 2 = 3.0052

Table 5.1: Comparison of Original Circles and Fuzzy Circles

We find in Table 5.1 that the centers of fuzzy circles generated by our algorithm is very close to the

original ones (It is important that we do not confuse fuzzy center with geometric center of a crisp circle!).

The little difference may result from the noise data points or computation error. The data points and

two centers of fuzzy circles are shown in Figure 5.2.
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Figure5.2:TwoCirclesandThirtyNoisePoints

Example 4

Here, we consider 60 data points for each of the following three circles defined by: (x - 3) 2 + (y - 7) 2 = 4,

(x - 7)2 + (9 - 7)2 = 4, and (x - 5) 2 + (y - 4) 2 -- 9, but there is a uniformly distributed noise with an

interval 0.5 added to the x and y locations of the data points so that the points do not lie on the ideal

curves, on a region 10 x 10. The total number of data points is 180.

We suppose also that our fuzzy prStotypes are fuzzy circles with membership function defined by

(5.8). The results obtained by our algorithm are shown in Table 5.2. The fuzzy criterion value is 0.601.

Original Circles

(x- 3)2+(y- 7)2=22

(x-7)2+(y-7)2=22

(x-5)2+(y- 4)2=32

Centers of Fuzzy Circles

(x - 3.081) _ + (y - 6.976) _ = 2.024 _

(x - 6.891) 2 + (y - 6.954) 2 = 2.0722

(x - 5.035) 2 + (y - 4.083) 2 = 3.0862

Table 5.2: Comparison of Original Circles and Fuzzy Circles

The data points and two centers of fuzzy circles are shown in Figure 5.3.

Example 5

This example considers a case consisting of a mixture of multiple types of fuzzy prototypes. We produce

60 noise data points on a parabola y = (x - 5) 2, 60 noise data points on a circle (x - 5) 2 + (y - 4) 2 = 9,

20 noise data points on a straight line y = 4, and 20 noise data points on a straight line x = 5 on the

region 10 × 10, where the noise is uniformly distributed on an interval 0.5. The total number of data
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Figure5.3:ThreeNoiseCircles

pointsis160.

Ourfuzzyprototypesarecomposedof fuzzyparabola,fuzzycirclesandfuzzylines.Generally,let

g(x) = 0 be a center of a fuzzy prototype. It can be of any geometric sharp. A fuzzy prototype with

center g(x) = 0 will be defined by a fuzzy set with membership function

p(x) = exp(-c. Ig(x)l) (5.9)

where c is a positive coefficient, for example, c = 1, in which if x is on g(x) = 0, then p(x) = 1.

Let us show the results by Table 5.3 when the number of clusters is 4.

Original Prototypes

y = (x - 5) 2 (parabola)

(x - 5) 2 + (y - 4) 2 = 32 (circle)

y = 4 (line)

x = 5 (line)

Centers of Fuzzy Prototypes

y = 0.906(x - 4.946) 2 (parabola)

(x - 4.834) 2 + (y - 3.947) 2 = 3.1322 (circle)

y = 3.900 (line)

x = 4.900 (line)

Table 5.3: Comparison of Original Prototypes and Fuzzy Prototypes

We also show the results by Figure 5.4.

5.1.4 Cluster Validity

Cluster validity is clearly an issue in cluster analysis especially when the methods used are heuristics

and algorithmically derived. For example, how does a given algorithm thus obtained guarantee that
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Figure5.4:NoiseCircle,NoiseParabolaandTwoNoiseLines

thenumberof clusters used is the one and only one (optimal) for a _ven study? Additionally, for a

given experiment, how does the algorithm ensure that a particular classification is efficient or optimal?

This problem is particularly relevant for the popular fuzzy algorithms such as the fuzzy c-means type

algorithms of Bezdek[?] and others,the fuzzy c-shells algorithms of Dave and others[16], etc.

The classical validity techniques employed in each of the foregoing include the use of the partition

coefficient as proposed by Bezdek[6], the classification entropy of classical statistics and extended to the

fuzzy c- partition, the fuzzy hypervolume and fuzzy partition density, and the array of validity measures

for fuzzy c-shells proposed by Dave[17].

The issue of validity measures, on the other hand,is rather mute for the fuzzy dynamic programming

clustering algorithm of Esogbue[22] which inherits the optimality properties of dynamic programming

but is limited by the computational demands of that algorithm. This desirable feature is apparently also

transferable to the fuzzy clustering algorithm described here. However, because solution of the model was

eventually realized by a genetic algorithm, we have addressed the validity issue by proposing a cluster

validity measure which we outline in the sequel.

5.1.5 Validity Measures

In Esogbue and Liu[30], we presented some analytic validity measures for this algorithm. Basically, given

a number of clusters, N, we show that we can obtain N optimal clusters represented by parameter vector

by employing fuzzy criterion clustering. We denote the N clusters by ul, u2,..., uN. Then the K data

points can be classified into one and only one cluster of Ul, u2,..-, UN.

If we let the length of un be L,_, the number of data points belonging to u,_ be K,_, n = 1, 2,..., N,
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respectively,thenwehave K1 + K2 +... + KN -----K. The validity measure g(, N) is defined by

= , n=l,2,...,N . (5.10)

On the other hand, we know that cluster validity should eliminate spurious clusters and merge com-

patible clusters. According to the partition rule of fuzzy criterion clustering, any point can belong to

one and only one cluster, so a cluster is considered spurious if the number of its data points is too small,

meanwhile, the validity measure g(, N) should also be too small. Furthermore, compatibility of two clus-

ters implies that there is at least one cluster such that it contains only a few number of data points, i.e.,

the validity measure g(, N) is very small. Hence g(, N) can be regarded as a validity measure.

We note that this validity measure presumes the existence of an approximate estimation on the number

of potential points of certain prototypes. Meanwhile, the length Ln will be represented by that number.

The inspiration for this assumption is from the theory and operation of the digital process of a camera.

5.1.6 Summary

In this section, the use of the concepts of fuzzy prototype as opposed to crisp prototype as well as fuzzy

criterion for optimal clustering was presented. Numerical experiments show that fuzzy criterion clustering

based on fuzzy prototypes can overcome the effect of noise points. Its effectiveness was demonstrated for

these and other studies reported elsewhere. The validity issue was also addressed.

This method which we have termed fuzzy criterion clustering has the capability of accurately classify-

ing and detecting typical clusters including circles, ellipses and various shapes that have posed problems

for some well known algorithms reported elsewhere in the literature. Additionally, it is robust and appeal-

ing to practitioners because of its user driven fuzzy criteria clustering objective function. Applications to

the clustering of real world data arising from water pollution control studies as well as MRIs in cardiac

sequence detection experiments are in progress in our laboratory.

5.2 Efficient Dynamic Programming Methods

Fuzzy dynamic programming is a powerful control and analysis apparatus which seeks to extend clas-

sical dynamic programming to many real life situations characterized by uncertainty, especially of the

imprecise and ambiguous variety. Penetrating reviews of the developments in the field of fuzzy dynamic

programming as well as an insightful discussion of possible extensions are provided by Esogbue and Bell-

man [23] and recently by Esogbue and Kacprzyk [27]. A particularly interesting generalization involves

decision situations in which the decision, constraints, goals, and system dynamics are all fuzzy as given is

treated by Baldwin and Pilsworth [2]. The details of these concepts and proofs are provided in Liu and

Esogbue [55]. We present the framework for fuzzy criterion set and fuzzy criterion dynamic programming
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whichisa generaltoolfor dealingwithmanydecisionandcontrolsituationsarisingin manyfieldsin-
cluding the stochastic reservoir operation and stochastic inventory control models of operations research

and engineering. Specifically, the objective is to maximize the expected fuzzy criterion function of the

product of fuzzy criterion sets. We outline existence, uniqueness and stability theorems of the derived

solutions to this model whose resultant optimal control is a bounded critical number policy under the

usual regular hypothesis assumptions.

5.2.1 Fuzzy Criterion Sets and Fuzzy Criterion Functions

Let X be a collection of elements denoted generally by x with the fuzzy set A in X the set of ordered

pairs, defined as

A = {(X,#A(X))]X • X} (5.11)

where #A(X) is called the membership function of x in A. We say that A is a fuzzy criterion set if A is
w

the set of all satisfactory elements and #A (x) is the satisfactory degree of x. In this section, we call #A (x)

the fuzzy criterion function.

As in the basic theory of fuzzy sets, we define an a-level set as one of elements that belong to the

fuzzy criterion set A at least to the degree a:

A_ = {z • Xl_(x) >__}. (5.12)

A fuzzy criterion set A is said to be unimodal if its fuzzy criterion function #A (x) is unimodal. For

additional concepts employed in the exposition of fuzzy criterion dynamic programming see Liu and

Esogbue[55].

5.2.2 Fuzzy Criterion Dynamic Programming

To motivate our model, consider an inventory system. If the demand must be satisfied regardless of the

physical constraints of the warehouse or reservoir, then the state of the system can be described by the

imaginary inventory level. When the imaginary inventory level is less than the dead inventory level (dead

storage), then we cannot fulfill demand. In this case the difference represents the shortage quantity.

When the imaginary inventory level is greater than the largest physical storage, the amount exceeds the

capacity of the warehouse or reservoir, and the difference represents the degree of exceeding the level or

flood. Usually, there exists a best state at which we define the value of fuzzy criterion to be 1. When

the inventory level deviates from the best state, the fuzzy criterion value decreases. Thus, the set of

all satisfactory states is a fuzzy criterion set whose fuzzy criterion function is the satisfactory degree of

elements.

For a given N-stage decision process, inventory control process or reservoir operation problem, let

At, As,..., AN be fuzzy criterion sets of satisfactory states with fuzzy criterion functions #1, #2,..., #N
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at stages 1, 2,..., N, respectively, on the real line R. Assume that A], A2 .... , AN are coefficients of convex

combination representing the relative importance among A1, A2 ..... AN. Let x_, d, and _/ be the state,_':_..

decision and stochastic variable respectively at stage i, then the state transition equation has the following

form:

2:/+1 =x/+d/+_/, i=l,2,...,N. (5.13)

Our problem is then to control this system such that the states over all stages are satisfactory,

i.e., at the stage n, the objective is to maximize the expected fuzzy criterion function of the product

A, ® A,+I ®...®AN.

Based on the fuzzy criterion set operations, the expected fuzzy criterion function J, of product

A, ® A,+] ®... ®AN is
N

x-", (.) f
J,(x;) = • + (5.14)

i=n R

where x is a state vector, _sadecisionvector, and'y_ n) N= Ai/_']_j=n Aj(5.15)For the quantities di and _,,

positivity implies that it is an input, negativity implies that it is an output. We also mention that

"y(,'_) : 7(+)1 : ... : 3,(n) are simply coefficients of convex combination and 7(n): "/(n_l : "'" : 7(N'_)= An:

_n+l : "'" : )kN.

Let us now introduce the fuzzy criterion dynamic programming model associated with problem (5.14)

as follows:

where

IN(Z) =

I.(z) =

sup LN(Z + d)
dEDN

sup (OnLn(x + d)
dED_

+(1 - On) fR f_+](x + d + _)ddgn(_)}

n < N-1

(5.16)

f

Ln(y) = ]R lz'_(Y + _)d¢,_(_), (5.17)

and 0,_ = _('_), Dn = [q,z, Qn] is a set of feasible policies, qn and Qn are not necessarily finite and positive.

We also make the following assumptions:

(A1) The quantities _1, _2, ..., _N are independently stochastic variables with distributions _1, _2, .-.,

CN, respectively, and E[_/[ < +00, where E denotes the expected operator.

(A2) The fuzzy criterion functions/_(x) of fuzzy criterion sets Ai: R _ [0, 1] are continuous almost

everywhere for all i, and limz--.+oo #i(x) = 0.

(A3) At least one of the following conditions holds,
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1. #_arecontinuousfunctionsforall i;

2. _ arecontinuous distributions for all i.

Additionally, we mention the following facts:

1. When D,_ = R + and the support of the distribution _, is R-, the equation (5.16) is a standard

inventory model. In this case, the control is to order commodities from outside and the stochastic

variables are quantities of demand.

2. When Dn is a closed interval on R- and the support of the distribution ¢,, is R +, the equation

(5.16) is a reservoir operation model. Meanwhile, the control is to release water from the reservoir

and the stochastic variables are quantities of inflow.

3. f,_(x) is the expected fuzzy criterion function of the product An ® An+l ® "-. x AN in Euclidean

space R N-n+l for any n.

5.2.3 The Basic Theorem

Consider the following convolution operator,

f

H(y) = JR h(y + _)d¢(_)
(5.18)

where h is an integrable and bounded functional. Usually, the functional H(y) is not necessarily contin-

uous, but we have the following result.

Lemma 1 If h is a measurable bounded functional which can have at most a countable number of dis-

continuities, then so is H. In particular, H is a continuous functional if at least one of the following

conditions holds:

I. h is a continuous functional;

2. _ is a continuous distribution.

Theorem 1 Assume (ml), (m2) and (As) for all stages, then the dynamic programming equation (5.16)

defines a sequence of continuous functions. Moreover, there exists a Borel function dn(x) such that the

supremum m (5.16) is attained for any x if Dn can be restricted to a compact set for any n.

Proof: First, we know that Lr,(y) is continuous by assumption (A3) and Lemma 1. At stage N, it is easy

to show that fN(x) is continuous and there exists a Borel function dn(x) such that fN(X) = LN(X+dN(x)),

from a classical selection theorem, since we can restrict the feasible set DN on a compact set.

For stage n + 1, we suppose that fn+l is continuous and there exists a Borel function dn+l(x) such

that the supremum is attained by induction.
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Next,we consider stage n. Since f,+l is continuous, we know that fafn+l(x + d + _)d¢,_(_) is

continuous, and similarly the bracketed term of the equation. A similar argument can prove that fn

posses the same properties. []

Remark: Since the supremum in dynamic programming equation (5.16) is attained for any x, the

supremum can be replaced by maximum in (5.16) under assumptions (Al), (A2) and (A3).

5.2.4 Infinite Horizon Problem

We consider the infinite horizon problem which is to maximize

oo

J.(x;) = x-- (.)/R2_., 7i #_(xi + di + _,)d¢i(_i) (5.19)
i---_n

where 7i-(n) = Ai/(An + An+l + "" ") and _1 Jr" _2 "4" "'" = 1. Then the dynamic programming equation

associated with problem (5.19) can be written as follows:

A(x) = tieD.sup{8nLn(x +d)

+(1 --On) JR fn+l (x + d + _)d_n(_)}

where 8n = 7 (n). In this section, we will suppose that all ,Xi > O. This implies that

(5.20)

0 < O,_ < 1, Vn. (5.21)

To establish existence and uniqueness theorems for the solution to (5.20),we first propose the following

lemma:

Lemma 2 Assume (A1), (A2) and (A3) for all stages, then the relations

wn(x) = OnLn(x+ d.)

+(1 - On)fR Wn+l(x + d. + _)dC.(_)

define a bounded sequence of continuous functions. Moreover, Wn is explicitly defined by

oo

wn(x) = _ _}")Ln.i(_+ d. + ... +#,1
I n

where
f f

Ln,_(y)
JR'" JR I_,(Y + _n +"" + _i)dOn(_n). ..d¢i(_,)

and d_ are any given feasible policies in D,_, respectively.

(5.22)

(5.23)

(5.24)

We will also need the following lemma which we state without proof:
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Lemma 3 Consider

and

T(p) = sup {OH(p'd) + (1-O) /RF(p'd'r)deP(r) }dED

where _ is a probability measure, h, H, f and F are integrable and bounded and 0 < 0 < 1.

given p and e > O, there exists a point do E D such that

It(p)-T(p)l < OIh(p, do)- n(p, do)l

+(1 -0) / [[f(p, do,r)

-F(p, do, rJa)ld¢(r) ] + e.

We also state, without proof, the following theorems:

(5.25)

(5.26)

Then, for any

(5.27)

Theorem 2 [Existence Theorem] We consider

w°(=) = w.(=)

W_+l(x) = sup _OnLn(x +d)
dE D,_ L

+(1 on) f R _ }- W,_+,(x+d+_)dCn(_) .

Then we have

and

(5.28)

Wn k+l > Wn k k = O, 1, 2, (5.29)
-- , ,,,

w2 r w:. (5.30)

Moreover, the limit W,_(x) is a continuous bounded solution to (5.20) if we assume (A1), (A2) and (A3).

Theorem 3 [Uniqueness Theorem] Assume (Ax), (A2) and (An) for all stages, then there is one,

and only one, bounded solution to (5.20).

5.2.5 Stability Theorem

In the theory of hmctional equations, an interesting problem is the stability of solutions.

We set

[[/_[[. = sup, tJa_/ ["(p +')[d_(')}"

It is obvious that

I1 11 < sup I (p)l.
p

Now, let {_,_} be another sequence of fuzzy criterion functions and {F,_} be the corresponding solutions

to (5.16). Then we have the following stability theorem.
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Theorem 4

stages, then

[Stability Theorem] We consider model (5.16) and assume (hi) , (m2) and (Aa} for all

N

Jfn(x) -- Fn(x)J < Z JjPi - _il[_,, Vx. (5.31)
i=rt

5.2.6 Optimal Control Policy

In this section, we will give the operating characteristics of the resultant control policy.

Convolution transformation is an important operator. One important problem is to know whether

the property of unimodality is preserved under the operation of convolution.

Now let f and g be two functions, then the convolution f • g of f and g is given by

f * g(x) = In f(x + y)g(y)dy.

Since the convolution of unimodal functions is, in general, not unimodal, Ibragimov[37] called a

function g strongly unimodal if the convolution f • g is unimodal for every unimodal f and proved that

a nondegenerate density is strongly unimodal if and only if it is logconcave 1.

The Ibragimov's characterization of strong unimodality enables us to identify several standard distri-

butions that are strongly unimodal. Some of these are:

(i) The normal distribution;

(ii) The uniform distribution on interval (a, b);

(iii) The gamma distribution with shape parameters p > 0i

(iv) The beta distribution with parameters (p, q) with p > 1 and q > 1;

(v) The Pearson-III distribution.

Lemma 4 Let f(x) be a unimodal function about a mode v on R, then we have

f(x 4- q),
h(=) = sup f(= + d) = f(v),

d_O
I(= + Q),

v--q<x

v-Q<x<v-q

x<v-Q

and h(x) is also unimodal. Moreover,

[v- Q,v - q] c 0

where 0 is the set of modes of h, D = [q, Q] and q and Q are not necessarily finite and positive.

Proof. The proof is immediate.

IA nonnegative function g is called logconcave if logg is concave.

[]
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Figure 5.5: Comparison of h and f

Next, we consider the fuzzy criterion function #n which is unimodal about a mode x_.

return fn+l(y) is unimodal, we propose the following hypothesis.

Regular Hypothesis. For any n, the mode

is constrained as follows:

where On+l is the set of modes of fn+l.

Z* E On,+ I

When the

The regular hypothesis means that the most satisfactory point at the current stage should lie on the

set of modes of the return at the successive stage; in other words, it should be a beneficial initial state of

the next stage.

Theorem 5 Assume that (a) all fuzzy criterion functions are unimodal; (b) all distributions are strongly

unimodal; and (c)the regular hypothesis holds, then, for any n, the optimal control is a bounded critical

number policy, i.e.,

I qn,

Qn,

where the critical number _n is a mode of Fn(y).

"xn -- qn < X

_n - Qn < x <_ "_n _ qn

x < _,, - Q,,

(5.32)

5.2.7 Summary

In this section, we presented the concept of fuzzy criterion set and the resultant fuzzy criterion dynamic

programming established on the fuzzy criterion sets. Som e key properties of this novel model which is

especially useful in multi criteria decision making were obtained.
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Chapter 6

Applications to Space Systems

6.1 Application to Tethered Satellite System Retrieval

The tethered satellite system problem represents a highly nonlinear control problem with a five state

variables, which is considerably more than the usual test problem found in the literature. A tethered _

system is any two or more bodies connected by a long thin structure. The system focused on in this

example is the deployment, station-keeping, and retrieval of a target satellite from the Space Shuttle.

_vVith a fixed-length tether for systems in the 'station-keeping' phase, the equations of motion are still

complex. Also, with a variable length tether--i.e., for systems in the deployment or retrieval phase--the

equations of motion are further complicated by time-varying coefficients. The system is described as

follows:

Inputs: State vector---s = [0, 8, ¢, ¢, /] .

Outputs: Tether length rate---a = Ill.

Equations of Motion: The model used in our simulation is a simplification of the actual dynamics

[?]. There are two coordinate systems in the model--the orbital axes and the tether axes. See Figure

6.1. The orbital axes, XYZ, are such that the positive Z direction points to the center of the Earth, the

positive X axis points in the direction of the trajectory, and thus the Y axis is perpendicular to the XZ

plane. The tether axes, xyz, are such that the z axis is aligned with the tether and have the same origin

as XYZ. The system attitude is described by

• In-plane motion or pitch: Rotation O about the Y axis.

• Out-of-plane motion or roll: Rotation ¢ about the instantaneous X axis.

These equations serve only to simulate the system and are not used in the derivation of the control law:
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k=,.

Figure 6.1: Tethered satellite system on the space shuttle.
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where s#,so,c# and co are the sin and cosine functionsof the respectivestatevariables,Ms and mc are

the subsatelliteand instantaneoustethermass, Qv and Q0 are generalizedexternalforces,Ro isthe orbit

radius,0p isthe true anomaly and _E isthe Earth gravitationalconstant•The valuesforthe parameters

used in the simulationare

[]Ms = 150kg ] pA = O.O015kg/m [l

Table 6•I:Parameters ofTethered SatelliteSystem Simulation.

The control variable is the deployed tether length rate, i. The state vector is defined as

g = {Xl,X2,X3,X4,X5} T = {e,_,¢,¢,l}" r. (6.3)

Controller Performance

The tethered satellite system experiments were replicated using various initial random number seeds. The

learning algorithm was allowed to continue online for 500,000 time steps of 1 second each. The controller

performed satisfactorily in these preliminary experiments in that it learned to retrieve the satellite from

100kin to almost 10kin before failure. The physical characteristics of the system make the retrieval phase

near the Shuttle very nonlinear and dangerous to the crew. The controller learned the characteristics of

the optimal control, namely the 'fishing' motion of sending the satellite out and then reeling it back in.

The control variable during retrieval is shown in Figure 6.2 and the resulting tether length starting at

100km is shown in Figure 6.3. Using the TD(0) method for the learning algorithm, the average control

surface using product-probability sum (P-PS) inference and center-of-area (COA) defuzzification method

for all 20 replications along with the standard deviation are given in Figures 6.4 and 6.5. From the set

of 20 replications, 6 resulted in a control policy that did not lead to failure. Of these 6 successful policies,

the mean SSE, SSE, was calculated as

50O00

i=l

with the results given in Table 6.2.

Using the Q-learning method for the learning algorithm, the objective is to minimize SSE via Q-

learning. The average control surface using P-PS inference and COA defuzzification method for all 20

replications along with its standard deviation are given in Figures 6.6 and 6.7. From the set of 20
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Figure 6.2: Control variable (length) during the retrieval of the satellite.
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Figure 6.3: Tether length during the retrieval of the satellite.
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Figure 6.5: Standard deviation of control surfaces using TD(0)-based controller on the tethered satellite

system.

Number of trials 20

Number of successful trials 6

Average SSE (success) 5.3462.109

Standard Deviation SSE (success) 3.4759.109

Table 6.2: Tethered Satellite System Results, TD(0) Algorithm.

..°- 4

......... ]-" : ..._.. F"'-:...

_o.[..... : i ..... '_"" i "'-,_... ! "_--..,
_ ..._.......: i ..-_-.', "'!-..,, ,

. :=.--" "..,,: ,, -.,

1 ...... . .... ::z. "'" 1

-1 _,._.,r...._"'_.O 5

Delta There (red/s) -:2 -1 Them (red)

Figure 6.6:Average ofcontrolsurfacesusingQ-learning-basedcontrolleron the tetheredsatellitesystem.
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Figure 6.7: Standard deviation of control surfaces using Q-learning-based controller on the tethered

satellite system.

replications, 7 resulted in a control policy that did not lead to failure. Of these 7 successful policies, the

mean SSE, SSE, was calculated with the results given in Table 6.3.

Number of trials 20
Number of successful trials 7

6.9573.109Average SSE (success)
Standard Deviation SSE (success) 3.7682.109

Table 6.3: Inverted Pendulum System Results, Q-Learning Algorithm.

With a = 0.01, we cannot reject the hypothesis that SSE for Q-learning is equal to SS-"E for TD(0).

Therefore, the TD(0) algorithm and the Q-learning algorithm perform approximately the same under the

above conditions on the tethered satellite system retrieval problem.

6.2 Application to Power System Stabilization Problems

One of the most intriguing and frequently investigated problem areas for deploying potent and novel

tools of control engineering is the power system stabilization problem. Many different control strategies

as well as controllers have been tested on this problem. Part of this interest is engendered by both the

challenge and intractability of power systems which are characterized by the existence of power inherently

complex, nonlinear, time-varying and indeterminable elements, simple controllers which work well in one

situation may not perform equally well in another. As part of the experimental investigations with the

SFAL controller, we explored its ability to learn a robust control law to stabilize the power system under

various operating conditions.

The earliest stabilizers consisted of a lead-lag analog circuit with the speed as the input. Such a simple
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controller cannot satisfy the high standards of the power system. PID controllers [34] perform better

than the lead-lag circuit. Yet, unless their parameters are tuned automatically as operating conditions

change, PID controllers in general do not work satisfactorily within a wide range of conditions. The

self-tuning controller [12, 31, 53, 52] and the adaptive controller [9, 10, 36] are designed specifically for

this purpose. By continuously identifying the model of the plant, the self-tuning controller adjusts its

parameters to achieve optimal performance, while the adaptive controller adjusts its parameters based on

the knowledge of the plant model. These two controller paradigms are time-consuming in design but can

perform well under different operating conditions. Most recently, fuzzy logic controllers [32, 33, 35, 52, 64]

have been successfully applied to stabilize power systems. It has been found that the fuzzy logic controller

performs as well as the self-tuning controller in power system stabilization [52] and shows great potential

for application in power systems. When the system is of large scale and of high complexity, however,

it is not easy to extract the control rules from human expert(s) [39] and, even if this can be done, the

expert's experience is still limited. Therefore, it is necessary to design .a controller that can "learn" the

control law via its own experience.

6.2.1 Mathematical Models of the Power System

The system considered here is composed of a synchronous machine with an exciter ad a stabilizer

connected to an infinite bus. The dynamics of the synchronous machine can be express , as follows using

the linearized incremental model [34]. These equations serve only to simulate the s_ _m and are not

used in the derivation of the control law:

A&

a_

AT,

A_q

AVt

Ad/d

= M(AT,,, - AT_ -

ATL - DAw)

= 377Aw

= K_A6+K2Aeq

1

= KaTd-----_(KaAeld-

KaK4A_ - Aeq)

= KsA_+ KsAeq

1

= _ (K/Adid - AVE)

1

= _ (AVA - K_Ae/d)

1

= "_"_A(KAAV_! - KAAVF + KAU --

KAKeAeq - KAKsA6 - AVA)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.1_)

(6._2)
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lul <_ _._x (6.13)

where

V_e f

AVt

AVo

Aefd

Ae a

A_

U

_XT_

/_TL

A5

Aw

KA, Ks

TA,TE

KF

TF

K1,..., K6

Zdo

M

D

T,

constant reference input voltage

terminal voltage change,

infinite bus voltage change

equivalent excitation voltage change

q-axis component voltage behind

transient reactance change

stabilizing transformer voltage change

stabilizer output

mechanical input change

energy conversion torque change

load demand change

torque angle deviation,

angular velocity deviation

voltage regulator gains

voltage regulator time constants

stabilizing transformer gain

stabilizing transformer time constant

constants of the linearized

model of synchronous machine

d-axis transient open circuit

time constant

inertia coefficient

damping coefficient

sampling period

The objective of the controller is to drive the state of the system £ to [0, 0] via the stabilizer output u.

The values for the above parameters are given in Table 6.4 below.

6.2.2 Simulation Results

We are interested in investigating the practicality and effectiveness of our newly developed controller in

stabilizing the power system whose model depicted in the foregoing section was used in the simulation

phase for system mimicking only but not for control purposes. The experiments run on the power
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K1 = 1.4479 K2 = 1.3174 K3 = 0.3072

K4 = 1.8050 K5 = 0.0294 K8 = 0.5257

KA = 400 TF = 1.0 TA = 0.05

D = 0 Tdo = 5.9 KE = -0.17

M = 4.74 TE = 0.95 Kr = 0.025

AT_ = 0 &V_/ = 0 Tj = 0.01

Table 6.4: Parameters of Simulation.

system stabilization problem consisted of multiple replications of the learning phase of the controller

on a simulated power system written in C. The inputs to the controller are Aw and A_b. Thus, the

controller in effect mimics a PD-[ike controller with unknown structure. The state space is defined as

Aw E [-0.012, 0.012] and A_b E [-0.025, 0.025]. The number of nodes for the SFDN is set at N -- 25 and

there are 5 reference control fuzzy sets defined for u E [-0.12, 0.12]. Once the controller has completed

the learning phase, it is used as a stabilizer in the system.

Several experiments were run and an example of the resulting controller is shown in the figures below.

Figure 6.8 shows the transient process of Aw when the load increases 0.05 pu and 0.3 pu, respectively.

It takes about 2 seconds for the speed deviation Aw to vanish for the 0.05 pu load change and about 3

seconds for the 0.3 pu load change. Figure 6.9 shows the learned control surface using product-limited

sum inference and center-of-area defuzzification.

Comparison to Existing Controllers

The simulation results clearly showed that the controller can learn an effective control law to stabilize

the system under varying load conditions. However, the results, are not optimal with regard to settling

time. The settling time obtained with our controller was slightly longer than the results obtained using

an existing PID controller [34] and a fuzzy controller [35], but comparable to or shorter than the settling

time for other fuzzy controllers [32, 33, 64] reported in the literature. The optimality issue (see Section

2.6.2) was subsequently investigated further. Although not optimal, the relative ease of developing an

"efficient" controller via the self-learning controller with respect to the existing methods demonstrates

the potential of this approach and in fact sufficiently meets the objectives of this project.

Despite the foregoing, the advantages of our controller over other controllers reported in the literature

that have been applied to the power systems stabilization problem are very significant and should be

noted:

• The controller successfully learned the control law via its own experience. It did not require the

analytic solution of a dynamical model, the tuning of parameters as in PID control, and it did not

rely on existing expert knowledge about the control of the process.

• The learning phase of the controller took less than 5 minutes to complete. Thus, there is a huge
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Figure 6.8: Transient Process for Selected Load Changes.
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time savings in development over the existing controllers.

• The internal controller parameters (that control the learning and other attributes) are very robust--

the parameters used for the inverted pendulum problem were used for the power system stabilization

problem. No tuning of these parameters was performed, although doing so might have improved

the resulting control.

• The resulting control is robust--the controller can handle a more extreme range of load changes

than the PID controller [34}.

Experimental Results with Defuzzification Filter

With equations from [29], we have

zl = Am,

z2 = -.2779A% - .3055A6 - T_/M, ..

z3 = .1533Aeq - .0471Ae/a - 115.1735Afl + .085A&

z4 = 31.9259Aeq + .0344Aefa -.0496AV,+

32.045A_ + 35.1345A6 + llS.1735TdM,

z5 = AS,

zs = Aeq + A V I.

Since ihe purpose of the stabilization problem is to control the system under disturbance, the desired

output can be chosen as y_ = 0. Thus, with Equation (??), we have the desired defuzzified value as

where co = 10, cl = 20, c2 = 30 and c3 = 10 which can be chosen by a proper pole placement method.

Parameters of the power system can be found in Table 6.5. The desired defuzzified control signal is given

by Equation 6.14.

K1 = 1.4479

K4 -- 1.8050

KA = 400
D=O

M = 2H = 4.74

Table 6.5: Parameters of power system used in simulation
K2 = 1.3174 K3 = 0.3072

Ks = 0.0294 K8 = 0.5257

TF = 1.0 Ta = 0.05
T_, = 5.9 KE = -0.17

TE = 0.95 KF = 0.025

1

u = 3-_.-_.8(182.077Aeq + 396.8AVF + 5.405Aela

4

+l.0282AVA + 13246Aw - 7.8899A5 + _ C__lZ,) (6.14)
i=l

Once the desired defuzzification control signal is obtained, the recursive formula in Section 3 is used to

estimate the parameters of the filter. The actual defuzzification control signal is sent to the generator as

stabilization signal. In this application, control signals which were obtained by a adaptive fuzzy-neuro
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controllerarefilteredbytheproposeddefuzzificationfilter,andthenthefilteredcontrolsignalsaresent

to thegenerator(SeeFig.6.10).Sincethefuzzy-neurocontrollercouldnotalwaysproducecontrolsignals
whichstabilizethegenerator,theintroductionofthedefuzzificationfilterhasaremarkablestabilization

effect:Forcontrolsignalswhichwereableto stabilizethegenerator,thedefuzzificationfilterwill filter

thecontrolsignalsuchthatthesettlingtimeof thesystemisshorter(SeeFig.6.1i); forcontrolsignals

wherewerenotableto stabilizethegenerator,thedefuzzificationfiltercanfilter thecontrolsignalsuch

thatthenewcontrolsignalcanstabilizethegenerator(SeeFig.6.12);whentheneuro-fuzzyself-learning
controllerwasabletostabilizethesystembut thesettlingtimewassatisfactory,thedefuzzificationfilter

canrevisethecontrolsignalandyieldabettersettlingtime(SeeFig. 6.13).Thus,thoseexperiments

areall supportiveoftheapplicationofdefuzzificationfilter.

Preliminary /

Defuzzifier _- Defuzzifi-
cation
Filter ,

Plant

Figure 6.10: Structure of the control system with the defuzzification filter.

Comparison of the neuro-fuzzy self-learning controller and the filter

Two different measures of performance can be utilized here. One performance measure is the settling

time of the transient process, and the other the success rate of stabilization. Therefore, we will compare

the neuro-fuzzy self-learning controller and the defuzzification filter with respect to these two measures.

In addition, control signals from the neuro-fuzzy self-learning controller and the defuzzification filter will

also be compared. Comparison of the control signals and settling times It will be interesting to compare,

in each case, the control signals from the filter and the neuro-fuzzy self-learning controller, and to find

out why the neuro-fuzzy self-learning controller sometimes fails to stabilize the system while the filter

does not.

Comparisons were made when the load was increased by .05pu and .30pu respectively. Fig. 6.14

shows the control signals when the load change was .05pu and in this case, the neuro-fuzzy self-learning

controller could yield a satisfactory settling time and the filter gives a better settling time. Fig. 6.15

shows the control signals when the neuro-fuzzy self-learning controller failed to stabilize the system while

the introduction of the flter can stabilize the system. Obviously, the control signal from the filter is much

smaller than that from the neuro-fuzzy self-learning controller. Fig. 6.16 shows a different case where

the self-learning controller can stabilize the system but the settling time was not satisfactory. Again, it

has been found that the control signal from the neuro-fuzzy self-learning controller is greater than that of

the filter. When the load disturbance is .3pu, experiments were also carried out with different simulation
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resultsobtained.Figures6.20-6.22showthecontrolsignalswhentheloaddisturbanceis .3pu.Obviously,
it canbeseenthat

• Ontheaverage,thecontrolsignalfromtheneuro-fuzzyself-learningcontrolleris quitedifferent

fromtheidealonewhilethecontrolsignalfromthefilter isquitecloseto theidealone;

• In mostcases,thecontrolsignalfromthefilter isabout180degreeslagof the idealsignalwhile
thecontrolsignalfromtheneuro-fuzzyself-learningcontrollercouldbein stepwiththat fromthe
filter;

• Whenthecontrolsignalfromtheneuro-fuzzyself-learningcontrollerisquitecloseto theidealone,
theself-learningcontrollercouldstabilizethesystem;

* Thesignalfromthefilter canstabilizethesystemwhetheror not theneuro-fuzzyself-learning
controllercan.

This,indirectly,indicatesthatthefunctionalityofthedefuzzificationfilter is torectifythecontrolsignal

fromthepreliminarydefuzzifierto makeit becloseto theidealone. Anotherimplicationfromthis
observationis that howcanonemakethe neuro-fuzzyself-learningcontrollerlearnthe idealcontrol
signalin a largerprobability.

Comparison of the success rates To indicate the effectiveness of the defuzzification filter, let us have

an interesting comparison of the success rates of both the neuro-fuzzy self-learning controller and defuzzi-

fication filter. Assume whether or not the system can be stabilized is totally unknown in advance. Thus,

if we assume x = 1 when the system is stabilized and x = 0 if not, then, x will be a random variable (or

indicator). Denote xs and x! as the indicators for the neuro-fuzzy self-learning controller and the filter

respectively, then E(xs) and E(x!) will be the mean value of the probability that the system is stabilized

by the neuro-fuzzy self-learning controller and the filter respectively.

We can estimate E(xs) and E(x!) with P1 = _f_x,/N and P2 = _"_xl/N where N is the number of

runs. To do so, twenty runs of the simulation were carried out with both E(xs) and E(x;) recorded. It

was found that _]x,/20 = 0.45 and ___x!/20 = 1. Thus, the difference in success rates of the neuro-

fuzzy self-learning controller and the defuzzification filter is 0.55. To investigate if this difference is due

to chance or due to the improvement of the filter, we applied the following procedure [59]:

Let P1 and P2 be the success rates of the neuro-fuzzy self-learning controller and the defuzzification

filter, respectively. We will use the normal approximation to test the hypothesis that these two success

rates are equal; that is,

Ho: PI = P2
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Then,compute/5with thefollowingformula:

/5=__
15l -I-P 2

(6.15)

The statistic to test Ho is

Zo= v/p( 1_ 0)(_) <_.16)

We should reject Ho when JZoJ > Za/2 where a is a preselected significance level (= .05 in this study). A

simple computation yielded that Zo = -3.8952 and it is known that Z.o25 = 1.95. Thus, the hypothesis

Ho should be rejected. That is, the difference between the success rates of the neuro-fuzzy self-learning

controller and the defuzzification filter in this study is not due to chance, but due to the significant

contribution of the filter to the stability of the system.

x 10 .4 __.process with filter
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Figure 6.11: Transient Process--Case 1: Both the neuro-fuzzy self-learning controller and the filter

stabilize the system.
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6.2.3 Summary

In this section, the design and applications of the defuzzification filters were presented. To design a

defuzzification filter, the inverse of the plant must be known, and reference signal was used to generate

the filter output--the defuzzified signal. The parameters of the filter were estimated by means of a

recursive learning law, which is much less computational intensive. A filter was designed for the power

system stabilization problem for which a neuro-fuzzy self-learning controller had been designed and

applied. It was found that the defuzzification filter can yield better performance in the sense that when

the neuro-fuzzy self-learning controller could stabilize the system, the application of the defuzzification

filter will yield faster transient process and if the neuro-fuzzy self-learning controller failed to stabilize

the system, the defuzzification filter will stabilize the system. Simulation results indicated the significant

improvement of the filter applied in the power system stabilization problem. For future study, we are

intending to expand the concept of defuzzification filter and search for a better way to design such filters,

and explore potential applications of defuzzification filters.

136



x 10.3
2

u i ! i i I I I

1.5

0.5

0
i

c-
O

(J -0.5

-1

-1.5

-2 o

......... Preliminary controlsignal

.,o

A
I-'T'-;4"". - "-... ..............................................................................................

IA' I° °o ""
, -I' i 41

, o o i ,b
0 I _ I' 1 ¢ ql .

= o u • • .-'_.11_ ___-_-_= ........................................................
I:_ii_,,=....,:,,,,,-

_ _ ,

'I

_] .... Ideal controlsignal

Control signalfrom filter

I00 200 300 400 500 _ 700 800 900 1000
Time sec.

Figure 6.21: Control Signals--Case 5.

137



x 10 .3

2 1 .........

15 t ....

oi!
P If" I ) 'l= f "V ',,_" ",.,,,.,,.c"-__,,"'_ ............................................................
"_ i!il J [ _ _A/"_"--"--'-- --'--" = -.......
8 it_,/',;-fV_/"" "-o.sII:tI_i'_v.

plJ_d----'"" ...............................................................................................
I

-1 : !-:'_J
I
I
I

Lo
iI
_t

-1.5

Ideal control signal

Control signal from filter

Preliminary control signal

1000"20 11_10 21_ 300 460 SO0 660 7C)0 8C)0 9(_0
Time sec.

Figure 6.22: Control Signals--Case 6.

138



Bibliography__

[1] L.C. Baird III, Reinforcement learning in continuous time: Advantage updating, in Proceedings of

the 1994 International Conference on Neural Networks, 1994, pp. 2448-2453.

I2] Baldwin J.E. and B.W. Pilsworth, Dynamic programming for fuzzy systems with fuzzy environment,

Journal of Mathematical Analysis and Applications, 1-23, 1982.
p

[3] Bellman R.E. and L.A. Zadeh, Decision-making in a fuzzy environment, Management Science, Vol.

17, 8141-8164, 1970.

[4] Bellman R., R.Kalaba and L.A.Zadeh, Abstraction and pattern classification, J. Math. Anal. and

Appl., Vol.2, 581-586, 1966.

[5] H.R. Berenji, Y. Jani, and R.N. Lea, Approximate Reasoning-Based Learning and Control for Prox-

imity Operations and Docking in Space, Proceedings of AIAA Guidance, Navigation, and Control

Conference, New Orleans, LA, August 12-14, 1991.

[6] Bezdek J. C., Cluster validity with fuzzy sets, J. Cybernet., 58-73, 1974.

[7] Bezdek J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New

York, 1981.

[8] A. Boschitsch O.O. Bendiksen, Nonlinear control laws for tethered satellites. Advances in Astronau-

tical Sciences, 62, 1986, 257-276.

[9] Chin-Hsing Cheng and Yuan-Hih Hsu, Damping of generator oscillations using an adaptive static

VAR compensator, [EEE Trar_. on Power Systems, vol. 7, no.2, May 1992.

[10] Shi-jie Cheng, Y. S. Chow, O. P. Malik and G. S. Hope, An adaptive synchronous machine stabilizer,

IEEE Trans. on Power Systems, vol.-PWRS, no. 3, August 1986.

[11] Shi-Jie Cheng, O. P. Malik and G. S. Hope, Self-tuning stabilizer for a multi machine power system.

IEE Proceedings, vol. 133, TP. C, no.4, May 1986.

139



[12]S.-J.Cheng,O.P.Malik,andG.S.Hope,Self-tuningstabilizerfora multimachinepowersystem,in
IEE Proceedings, Vol. 133-C:4, May 1986, pp. 176-185.

[13] Coray C., Clustering algorithms with prototype selection, in Proc. Hawau Intern. Conf. Syst. Sci.,

945-955, 1981.

[14] E. Czogala and W. Pedrycz, On identification in Fuzzy Systems and Its Applications in Control

Problems, Fuzzy Sets and Systems, 6, 73-83.

[15] E. Czogala, Transformation of Knowledge Expressed by Means of Fuzzy Decision Tables into Neural

Network Representation, Proceedings of the IFSA Fourth World Congress, July, 199l.

[16] Dave R.N., Fuzzy shell-clustering and application to circle detection in digital images, Int. J. Gen.

Syst., Vol.16, 343-355, 1990.

[17] Dave R.N., Validating fuzzy partitions through c-shells clustering, Pattern Recognition Letters,

Vol. 17, 613-623,1996.

[18] Dave R.N. and K. Bhaswan, Adaptive fuzzy c-shells clustering and detection of ellipses, IEEE trans.

Neural Networks, Vol.3, No.5, 643-662, 1992.

[19] Dave R.N. and R. Krishnapuram, Robust c[_stering methods: a unified view, IEEE Trans. Fuzzy

Systems, Vol.5, No.2, 270-293, 1997.

[20] Dunn J.C., A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated

clusters, J. Cybernetics, Vol.3, 32-57, 1974.

[21] S.E. Dreyfus and A.M. Law, The Art and Theory of Dynamic Programming, 1977, New York, Aca-

demic Press.

[22] Esogbue A.O., Optimal clustering of fuzzy data via fuzzy dynamic programming, Fuzzy Sets and

Systems, Vol.18, 283-298, 1986.

[23] Esogbue A.O. and R.E. Bellman, Fuzzy dynamic programming and its extensions, Fuzzy Sets and

Decision Analysis, TIMS Studies in the Management Science, Vol.20, 147-167, 1984.

[24] A. O. Esogbue and J. A. MurreU, A fuzzy adaptive controller using reinforcement learning neural

networks, in Proceedings of Second IEEE International Conference on Fuzzy Systems, March 28-

April 1, 1993.

[25] A.O. Esogbue, Q. Song, and W.E. Hearnes, Application of a self-learning fuzzy-neuro controller

to the power system stabilization problem, in Proceedings of the 1995 World Congress on Neural

Networks, Vol. II, Washington, DC, July 17-21, 1995, pp. 699-702.

140



[26] A. O. Esogbue and W. E. Hearnes II, Constructive experiments with a new fuzzy adaptive con-

troller. NAFIPS/IFIS/NASA '9_. Proceedings of the First International Joint Conference of the

North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy

Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural

Networks and Fuzzy Logic, San Antonio, TX, December 18-21, 1994, 377-380.

[27] Esogbue, A.O. and J. Kacprzyk, Fuzzy Dynamic Programming: A Review of Its Main Developments,

Archives of Control Systems, In Print.

[28] A. O. Esogbue and Q. Song, Optimal defuzzification and applications, in Proceedings of Fourth

Annual Conference on Fuzzy Theory and Technology, Sept. 28-Oct.1, 1995, Wrightsville Beach,

N.C.

[29] A.O. Esogbue and Q. Song, Defuzzification Filters: Design and Applications, Submitted to IEEE

Transactions on Fuzzy Sets, 1996. ."

[30] Esogbue A.O. and B. Liu, Cluster validity for fuzzy criterion clustering, Computers and Mathematics

With Applications, In Print

[31] A. A. Ghandakly and A. M. Farhoud, A parametrically optimized self-tuning regulator for power

system stabilizers, IEEE Trans. on Power Systems, vol.7, no. 3, August 1992.

[32] M. A. M. Hassan, O. P. Malik and G. S. Hope, A fuzzy logic based stabilizer for a synchronous

machine, IEEE Trans. on Energy Conversion, vol. 6, no.3, Sept. 1991

[33] T. Hiyama and T. Sameshima, Fuzzy logic control scheme for on-line stabilization of multi-machine

power system, Fuzzy Sets and Systems, vol. 39, 1991.

[34] Yuan-Yih Hsu and Chung-Yu Hsu, Design of a proportional-integral power system stabilizer, IEEE

Trans. on Power Systems, vol. PWRS-1, no. 2, May 1986.

[35] Yuan-Yih Hsu and Chin-I-Ising Cheng, A fuzzy controller for generator excitation control, IEEE

Trans. on Systems, Man and Cybernetics, vol. 23, no.2, March/April, 1993.

[36] E. Irving, J. P. Barret, C. Charcossey and J. P. Monville, Improving power network stability and

unit stress with adaptive generator control, Automatica vol. 15, 1979.

[37] Ibragimov I.A., On the composition of unimodal distributions, Theor. Probability Appl., Vol.1,255-

266, 1956.

[38] A. Isidori, Nonlinear Control Systems: An Introduction (2nd Ed.), Springer-Verlag, 1989.

141



[39]Jyh-ShingR. Jang,ANFIS:Adaptive-Network-Basedfuzzyinferencesystem,IEEE Trans. on Sys-

tems, Man and Cybernetics, voh 23, no.3, May/June 1993. "_

I40] J.S.R. Jang, Self-Learning Fuzzy Controllers Based on Temporal Back Propagation, from a personal

communication, 1992.

[41] C.L. Karr, L.M. Freeman, and D.L. Meredith, Improved Fuzzy Process Control of Spacecraft Au-

tonomous Rendezvous Using a Genetic Algorithm, Proceedings of the SPIE Intelligent Control and

Adaptive Systems, 1196, 274-288, 1990.

[42] R.N. Lea and Y. Jani, Fuzzy Logic in Autonomous Orbital Operations, International Journal of

Approximate Reasoning, 6:2, 151-184, 1992.

[43] R.N. Lea, Fuzzy Sets and Autonomous Navigation, from a personal communication, 1988.

[44] R.N. Lea, Automated Orbital Rendezvous Considerations, Proceedings of IEEE International Con-

ference on Robotics and Automation, Philadelphia, PA, Apr. 24-29, 1988.

[45] R.N. Lea, Automated Space Vehicle Control for Rendezvous Proximity Operations, Telematics and

Informatics, 5:3, 179-185, 1988.

[46] R.N. Lea, I. Chowdhury, Y. Jani, and H. Shehadeh, Design and Performance of the Fuzzy "Drack-

ing Controller in Software Simulation, Proceedings of the IEEE International Conference on Fuzzy

Systems, San Diego, CA, Mar. 8-12, 1992.

[47] R.N. Lea, J. Hoblit, and Y. Jani, Performance Comparison of a Fuzzy Logic Based Attitude Con-

troller with the Shuttle On-Orbit Digital Auto-Pilot, Proceedings of the 1991 NAFIPS Workshop,

291-295, 1991.

[48] R.N. Lea, J. Villareal, Y. Jani, and C. Copeland, Fuzzy Logic Based Tether Control, Proceedings of

the 1991 NAFIPS Workshop, 398-402, 1991.

[49] R.N. Lea, J. Villareal, Y. Jani, and C. Copeland, Tether Operations USing Fuzzy Logic Based Length

Control, Proceedinga of the IEEE International Conference on Fuzzy Systems, San Diego, CA, Mar.

8-12, 1992.

[50] R.N. Lea, J. Villareal, Y. Jaai, and C. Copeland, Space Time Neural Networks for Tether Opera-

tions in Space, Proceedings of the 199_ NAFIPS International Conference on Fuzzy Set Theory and

Applications, Puerto Vallarta, Mexico, Dec. 15-17, 1992.

[51] R.N. Lea, J. Villareal, Y. Jani, and C. Copeland, Learning Characteristics of a Space Time Neural

Network as a Tether Skiprope Observer, Proceedings of the 199_ NAFIPS International Conference

on Fuzzy Set Theory and Applications, Puerto Vallarta, Mexico, Dec. 15-17, 1992.

142



I52] C. M. Lim and T. Hiyama, Comparison study between a fuzzy logic stabilizer and a self-tuning

stabilizer, Computers in Industry 21, 1993.

[53] C. M. Lim and T. Hiyama, Self-tuning control scheme for stability enhancement of multi machine

power systems, IEE Proceedings, vo1.137, Pt. C, no. 4, July 1990.

[54] Liu B., Studies in Inventory Processes and Reservoir Operations, Ph.D. Dissertation, Institute of

Systems Science, Chinese Academy of Sciences, 1992.

[55] Liu, B. and A.O. Esogbue, Fuzzy Criterion Set and Fuzzy Criterion Dynamic Programming, Journal

of Mathematical Analysis and Applications, Voi. 199, 293-311, 1996.

[56] V.J. Modi, P.K. Lakshmanan, and A.K. Misra, On the Control of Tethered Satellite Systems, Acta

Astronautica, 26:6, 411-423, 1992.

[57] J.A. Murrell, A Statistical Fuzzy Associative Learning Approach To Intelligent Control, Ph.D. The-

sis, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,

December, 1993.

[58] S. Mabuchi, A proposal for a defuzzification strategy by the concepts of sensitivity analysis, Fuzzy

Sets and Systems, vol.55, 1993 ppl-4.

[59] D. C. Montgomery, Introduction to Statistical Quality Control (2nd ed.), John Wiley & Sons,

Inc.,1991.

[60] K. Narendra and M.A.L. Thathachar, Learning Automata: An Introduction, Englewood Cliffs, N J:

Prentice-Hall, 1989.

[61] Pal S. K. and P. P. Wang, Genetic Algorithms for Pattern Recognition, Boca Raton, FL: CRC, 1996

[62] Ruspini E.H., A new approach to clustering, Inform. and Control, Vol.15, 22-32, 1969.

[63] Ruspini E.H., Numerical methods for fuzzy clustering, Information Sciences, Vol.2, 319-350, 1970.

[64] J. Shi, L. H. Herron and A. Kalam, A fuzzy logic controller applied to power system stabilizer for

a synchronous machine power system, in Proceedings of IEEE Region 10 Conference, Tencon 92,

Melbourne, Australia, Nov. 11-13, 1992.

[65] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey,

1991.

[66] Q. Song and R. P. Leland, Adaptive learning defuzzification techniques and applications, to appear

on Fuzzy Sets and Systems, 1996.

143



[67]R.S.Sutton,LearningToPredictByTheMethodOfTemporalDifferences,Machine Learmng, Vol.

3, 1988, pp. 9-44.

[68] Tamura S., S.Higuchi and K.Tanaka, Pattern classification based on fuzzy relations, IEEE Trans.

Syst. Man Cybern, Vol.1, No.l, 61-66, 1971.

[69] J.A. Villareal and R.O. Shelton, A Space-Time Neural Network (STNN), Proceedings of the 2nd

International Joint Conference on Neural Networks and Fuzzy Logic, Houston, TX, Apr. l 1-13,

1990.

[70] C.J.C.H Watkins, Learning from delayed rewards, Ph.D. Thesis, Cambridge University, Cambridge,

England, 1989.

[71] C.J.C.H Watkins and P. Dayan, Q-Learning, Machine Learning, Vol. 8, 1992, pp. 279-292.

[72] P.J. Werbos, Neurocontrol and Related Techniques, in Handbook o_Neural Computing Applications,

A.J. Maureen, C.T. Harsten and R.M. Pap, eds., Academic Press, Inc.

[73] Yang M.-S., A survey of fuzzy clustering, Mathl. Comput. Modeling, Vol.18, No.ll, 1-16, 1993.

[74] Yager R.R. and D.P. Filev, Approximate clustering via the mountain method, IEEE Trans. Syst.

Man, Cybern., Vol.24, 1279-1284, 1994.

[75] R. R. Yager and D. Filev, SLIDE: a simple adaptive defuzzification method, IEEE Trans. on Fuzzy

Systems Vol. 1, No.l, 1993 pp 255-271.

[76] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, 1965.

144


